The model of Europa and a capability of the synthesis of organic compounds at the underwater plasma torch.

Managadze G. G., Moiseenko D.A., Chumikov A.E., Bondarenko A.I.

Space Research Institute

Russian Academy of Sciences

Laboratory of Active Diagnostics
Hermetic container for underwater plasma torch generation and accumulation of organic compounds, synthesized during the plasma emission.

Signs: 1 - Laser impact aperture, focused at the carbon tablet, 2 - antireflection lens, 3 - container's body, 4 - vertical section of cartridge, 5 - nitrate ammonium water solution, 6 - underwater plasma torch, 7 - the tablet of superpure carbon
Mass peaks of OC formed in a sub water plasma torch generated under the influence of laser radiation on a target made from carbon and water solution of NH$_4$NO$_3$, with an possibility of synthesis of Gly, Ala, Ser and Cys.
Penetrating meteorite impact
Penetrating meteorite impact at the Jupiter’s moon Europa.
1. Iron nucleus.
2. Rock formation
3. Ocean
4. Ice crust
5. Unloading area
6. External (outward) plasma torch
Estimations of OC density at the Europa ocean

$R_{\text{Europa}} = 1569\text{km.}$ $H_{\text{Ocean}} = 100\text{km.}$ $V_{\text{Ocean}} = 10^9\text{km}^3.$

To the Earth at the first 200 million years:
5 10^9 meteorites with diameter 3 km. $V = 13\text{km}^3$
(Ordinary chondritis 90%, Carbon chondritis 10%, comet nucleus 1%.)

To the Europa: $5 \times 10^{13} / 20 = 2.5 \times 10^{12}$ comet nucleus.
$V_{\text{comet}} = 3 \times 10^{13}\text{km}^3$

Ratio: $V_{\text{comet}} / V_{\text{ocean}} = 6 \times 10^3.$

Corrections:
- Carbon concentration: 10%.
- Number of carbon at OC: 10.
- Effective yield of OC: 1 – 10%.

Total correction: $2 \times 10^3 – 2 \times 10^4$

The ratio is 3 – 0.3.

This value approximately correspond to the density of the OC solution from 0.01 to 0.1% with average mass ~ 100 a.m.u.