

I. Digel B. Dachwald G.M. Artmann P. Linder O. Funke

A Concept Of A Probe For Particle Analysis And Life Detection In Icy Environments

Amateur's Opinion

Points of Interest:

- Ice Penetration
- In-situ Decontamination
- In-situ Detection of Bacteria

Ice Penetration

- Conventional Drilling
- Autonomous Drilling
- A Melting Probe
- A Melting/Drillig Probe

In-situ Decontamination:

- Guideline: Planetary Protection
- Criteria
- Consequent Selection
- Results

Our criteria for a proper in-situ decontamination method:

- High killing rate and activity against broad range of microorganisms, spores, fungi, viruses, small insects and worms (sic!)
- Fast decomposing and environmental "friendly" end products
- Good solubility in water
- Good penetration ability
- Activity in relatively cold environments
- Easy storage, handling and application
- Cost
- Better: a subsequent application of 2-3 compounds (!)

Antiseptics and disinfectants

- Acridine derivatives Ethacridine lactate Aminoacridine Euflavine
- Biguanides and amidines Dibrompropamidine Chlorhexidine -Propamidine - Hexamidine - Polihexanide
- Phenol and derivatives Hexachlorophene Policresulen Phenol -Triclosan - Chloroxylenol - Biphenylol
- Nitrofuran derivatives Nitrofurazone
- Iodine products lodine/octylphenoxypolyglycolether Povidone-iodine -Diiodohydroxypropane
- Quinoline derivatives Dequalinium Chlorquinaldol Oxyquinoline -Clioquinol
- Quaternary ammonium compounds Cetylpyridinium · Cetrimide · Benzoxonium chloride · Didecyldimethylammonium chloride
- Mercurial products Mercuric amidochloride Phenylmercuric borate -Mercuric chloride - Mercurochrome - Thiomersal - Mercuric iodide
- Silver compounds Silver nitrate
- Alcohols Propanol (Propyl Alcohol Isopropanol (Isopropyl Alcohol) -Ethanol (Ethyl Alcohol) -
- Other Potassium permanganate · Sodium hypochlorite · Hydrogen peroxide · Eosin · Tosylchloramide sodium

Common pesticides with established efficacy (EPA standards)

- Bleach (sodium hypochlorite)/chlorine dioxide
- Ethylene oxide,
- Hydrogen peroxide
- Peroxyacetic acid,
- Methyl bromide,
- Formaldehyde/paraformaldehyde/ on contamination
- Perborate ("persil")
- Percarbonate/pseudopercarbonate

Bleach (sodium hypochlorite)

- Chlorination of water (swimming pool)
- + Is allowed for food processing equipment: A weak solution of 1% household bleach in warm water is used to sanitize smooth surfaces prior to brewing of beer or wine

corrosive

Methyl bromide

H^{C.}

- + Safe and efficient soil sterilant
- + occurs naturally in the ocean, where it is found in some species of algae
- its use is curtailed by the Montreal Protocol
- (the list of banned ozone-depleting substances)

Peroxyacetic acid

- + very efficient and fast antimicrobial agent (OH)
- + no resistant microorganisms exist
- + can damage virtually all types of macromolecules associated with a microorganism: carbohydrates, nucleic acids, lipids and amino acids = no organic contamination
- + end products: acetic acid (!) and hydrogen peroxide

 (!)
- very effective at low temperatures
- highly corrosive
- being pure can explode at elevated temperatures

Formaldehyde/paraformaldehyde

- Saturated water soution = formaline H₂C(OH)₂
- +/- Environmental concerns
- Toxic, allergic, carcinogenic
- Variety of chemical reactions
- Kills most bacteria, fungi (including their spores), and parasites. Also used in vaccines
- +/- Preserves/inactivates organic molecules by cross-linking

- + well-studied bactericidal effects, "standard"
- end product in reaction with water is ethyleneglycol and ist derivatives
- gaseous
- potentially carcinogenic

Percarbonate/pseudopercarbonat e

- True percarbonates MeO-CO-O-OH are highly unstable
- "Sodium percarbonate" is in reality a mixture 2 Na₂CO₃ · 3 H₂O₂
- +/- solid
- unstable at 60°C
- creates very alkaline pH

Hydrogen Peroxide H₂O₂

- + Can operate at low temperatures
- + Humidity level is not as critical as with formaldehyde
- + Is residue free
- + Has fast "kill" times
- + Is a fully validated technology
- microorganisms having catalase or peroxidase have a chance to survive
- _ '

In situ Decontamination: a Car Wash Approach

Two-step in-situ decontamination process is suggested, consisting of a consequent application of two of the following compounds:

Sodium hypochlorite
 Peroxyacetic acid/Hydrogen peroxide
 Methyl bormide
 Sodium percarbonate

Life Detection:

Challenge:

- rapid
- in-situ
- non-invasive

method for detection, quantification and identification of microscopic organisms in water and glacial environments

Approaches Evaluated:

- Autofluorescence
- Light Scattering
- Flow Cytometry

Autofluorescence:

Non-invasive Easy to apply

Low specificity Weak signal

Autofluorescence may carry useful biological information as well:

- NADH can be used to monitor metabolic state of living tissues and for redox fluorometry, redox NAD(P)H imaging
- flavoprotein may be used for imaging and redox state detection of intracellular flavins using flow cytometry or fluorescence microscopy
- FAD fluorescence has been used for identification and cell sorting of eosinophils and neutrophils.

Fluorescent compound	Localization	Excitation maxima [nm]	Emission maxima [nm]
Aromatic amino acid	cofactors in metabolism, concentrated to		
residues:	mitochondria, also present in cytoplasm		
Tryptophan		280	348
Tyrosine		274	303
Phenylalanine		257	282
Pyridine nucleotides	cofactors in metabolism, concentrated to		
(reduced)	mitochondria, also present in cytoplasm		
NADH		290	440
		351	460
NADPH		336	464
Flavins and flavin nucleotides (oxidized)	riboflavin, FMN and FAD, mostly bound to enzymes as coenzymes of flavoproteins, concentrated to mitochondria, also present in cytoplasm and outer membrane	≈223	broad
		≈268	maximum
		≈374	around
		≈449	≈530
Collagen	connective tissue	280	310
		265	385
		330	390
		450	530
Elastin	connective tissue	290	340
		320	405
		350	420
		410	500
人名莫尔斯马克 法自然不足法的权利		450	520
Endogenous porphyrins	In erythroid cells	400-500	630
			690
Lipofuscin	Pigment granules accumulated with age in various cells	≈360	≈450

Fluorescent molecules naturally present in animal tissues

Light Scattering:

+
 Non-invasive
 Very sensitive

Noise Difficult to interpret

Flow Cytometry

In 1947 Gucker and colleagues: "The principle (of flow cytometry) should have wide application in (. . .) bacteriology."

Non-invasive Very sensitive (single cell counting)

Noise Difficult to interpret

Thank you

Jack.

44