Thermally emitting isolated neutron stars in the eROSITA sky

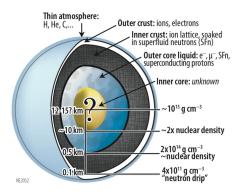
Future Perspectives of Space Science and Space Exploration

Adriana Mancini Pires

Axel Schwope, Christian Motch

Leibniz Institute for Astrophysics Potsdam (AIP)

Neutron stars: what we know

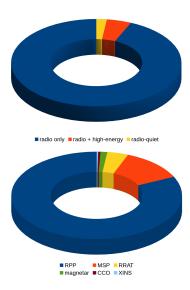


Courtesy: NASA/CXC/ESO

- 1932 very dense star to hold against gravitational collapse (*unheimliche Sterne*, Landau)
- 1939 supernova connection (Baade & Zwicky)
- 1967 fundamental discoveries in radio & X-rays (pulsars, Sco X-1)
- endpoint of the life of a massive star
- densest objects that can be directly observed in the Universe
- also the strongest magnets and the fastest spinning
- all four fundamental forces of Nature are important inside one

< 🗇 🕨 < 🖃 🕨

What we (do not) know

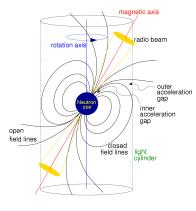

- evolution is coupled: magneto-rotational and thermal
- emissivity covers the entire electromagnetic spectrum
- dominant mechanism at a given age is determined by properties inherited at birth and temporal evolution

< ロ > < 同 > < 回 > < 回 >

Credit: SAO

Theoretical uncertainties: supernova explosion, equation-of-state, effects of mass loss/binarity, fallback accretion?

The neutron star census today


Over 2500 catalogued pulsars

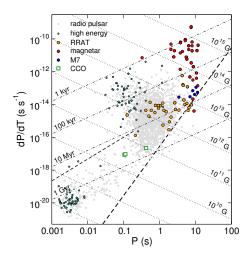
(%)	
98	seen in the radio regime
82	rotation-powered pulsar (RPP)
12	millisecond pulsar (MSP)
4	rotating radio transients (RRAT)
	(erratic and diverse radio sources)
2	magnetars, M7, CCOs
	(peculiar radio- and γ -ray-quiet)

< ロ > < 同 > < 回 > < 回 >

Source: ATNF pulsar database

The magnetic dipole braking model

Credit: Lorimer & Kramer


- radio pulse: lighthouse effect
- the star radiates at the expense of its rotational energy
- a gradual lengthening of the period (P) is observed (typically 3 s/10⁸ yr)
- consequence of torque exerted by the magnetic field (and particle acceleration)

Useful estimates of pulsar quantities

- spin-down: $\dot{E} = 4\pi^2 I \dot{P} P^{-3}$
- age: $\tau_{\rm ch} = P(2\dot{P})^{-1}$
- dipolar field: $B_{\rm dip}=3.2 imes10^{19}(P\dot{P})^{1/2}\,{
 m G}$

< ロ > < 同 > < 回 > < 回 >

Neutron stars in the Milky Way

Radio and γ -ray surveys

- rotation-powered pulsars
- millisecond (recycled) pulsars

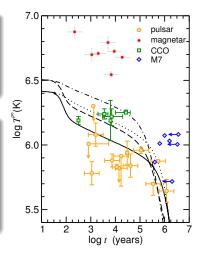
Peculiar neutron stars

- escape detection
- challenge evolution theories
 - magnetars
 - the 'Magnificent Seven' (M7)
 - central compact objects (CCOs, a.k.a. anti-magnetars)

Radio pulsars do not tell the whole story

The magnetar-M7 connection

Strong fields at birth produce hot and long-period neutron stars due to field decay


(models by Viganò, Rea, Pons, Aguilera et al.)

CCOs: different outcome of NS evolution

If the NS accretes lots of fallback debris:

- its magnetic field may be buried
- it won't spin down (no radio)
- its cooling rate is affected

(c.f. Chevalier, Muslimov & Page, Geppert, Ho, Bernal, Viganò, ...)

We need more sources!

These channels are not probed by radio and γ -ray pulsars

Despite the theoretical development seen in recent years:

 even the state-of-the-art models are built over uncertain assumptions

(e.g. initial field configuration, level of impurity of the crust)

- known pulsars are not sufficient to constrain models of field decay (Gullon et al. 2015)
- formation and fate of CCOs:

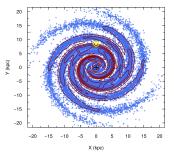
how common is such an episode in the Galaxy? timescale of field re-emergence?

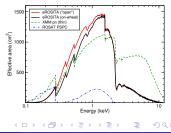
• ... plus transients and the unknown!

(faint AXPs/SGRs, old accreting neutron stars?)

eROSITA on board Spectrum-RG

- orbit around L2
- 4 years all-sky survey
- 3 years pointed observations
- large collecting area and FoV
- seven identical mirror modules
- data split MPE/IKI (West/East of the galactic centre)
- launch: September 25, 2017 (shipment to Russia: October 2016)

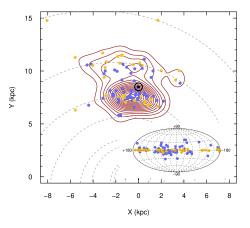



Credit: MPE

Unique potential (for decades to come!) to unveil faint radio-quiet neutron stars and probe the population as a whole

Tracking neutron stars from birth up to present time

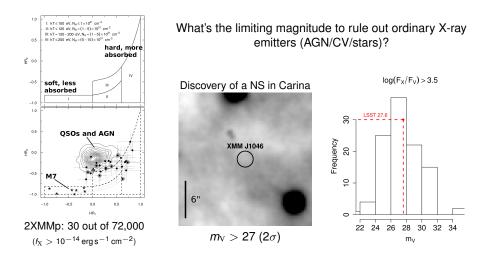
- progenitor stars in spiral arms
- interstellar medium (analytical hydrogen layers), abundances, cross-section
- birth properties: spatial velocity, isotropical kick, constant birthrate
- motion integrated in the galactic potential
- thermal evolution: standard cooling (to be included: effects of fallback/field decay)
- isotropic blackbody emission
- eROSITA effective area and filters, averaged over FoV, survey exposure
- detection limit of 30 counts (0.2–2 keV)



Jun 2, 2016

10/14

eROSITA forecast (Pires et al. 2016; in preparation)


- Simulations give 85 to 100 thermally emitting neutron stars in the survey after 4 yr
- Average distances within 300 pc and 8 kpc (median 2 kpc)
- The minimum flux is $\sim 10^{-14}\,\text{erg}\,\text{s}^{-1}\,\text{cm}^{-2}$
- The median flux is $\sim 3.5 \times 10^{-14} \, \text{erg s}^{-1} \, \text{cm}^{-2}$
- 20% of the sources at intermediate flux (~ 10⁻¹³ erg s⁻¹ cm⁻²)

Potential for discoveries

Sources at intermediate flux can already be targeted for follow-up in the optical (VLT, LBT) and in X-rays (XMM-Newton, Chandra)

Pinpointing candidates

Cross-correlation, selection in hardness ratio, visual screening, optical follow-up

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Follow-up expectations

Taking as reference our past work with the 2XMMp and the NS in Carina: (2XMM J104608.7-594306, Pires et al. 2009, 2012, 2015)

- efficient selection of 600 candidates with $m_{\rm R} > 21 23$
- 5 min/target (8 m class telescope) to rule out CVs/AGN (m_V > 27)

Assuming 20 neutron stars within the sample of candidates:

- 100 ks (5 ks/target) with Chandra for sub-arcsecond precision
- 2 Msec (100 ks/target) with XMM-Newton to:
 - constrain pulsations down to 15%
 - determine spectral parameters (5% kT, 15% N_H)
 - detect spectral features or deviations from the thermal continuum

Summary

Peculiar neutron stars	fewer in number, but very important!
eROSITA all-sky survey	ten-fold increase on known sources
Population synthesis	knowledge beyond the Solar vicinity
+ results of the survey	(spatial density, birthrate,
	alternative evolutionary channels)
Follow-up studies	evolutionary state
	identify missing links in the NS zoo

Thank you!

-

・ロト ・日下 ・ ヨト ・