Phobos Sample Return Project

Space Research Institute Vernadsky Institute of Geochemistry Radioengineering and Electronics Institute Apply Math Institute Lavochkin Association

Goals of the Mission

- Phobos regolith sample return,
- Phobos in situ study and remote sensing,
- Martian environment study
- Mars monitoring

Peculiarities of the mission:

- 1. Samples return
- 2. Mars system science:
 - Martian moons (regolith, internal structure, origin, evolution),
 - Martian environment (dust, plasma, fields),
 - Mars (surface and atmosphere global dynamics)

Phobos and Deimos: similarity and difference

\sim /	Dimentions	26,6x22,2x18,6 km	15,0x12,4x10,8 km		
\rightarrow	Dencity	1,9 ±0,1 g/cm ³	1,8 ±0,3 g/cm ³		
	Reflectance	0,071 ±0,012	0,068 ±0,007		
	Taxonomy	T (or B, or D)	D (?)		
	Morphology pecularities	long fossas	no fossas		
Москва	Gravity	0,54 cm/c ²	0,31 cm/c ²		
	\ Circular orbit	R=9378 km (2,76 R _m) T=7h 39 min, i=24º	R=23459 km (6,9 R _m) T=30h 21 min, i=24º		
	Proper motion	Synchronous rotation, libration: T=10h, A=7 ⁰	Synchronous rotation		

Problems driving to study the Martian satellites:

- origin of the Martian satellites,
- nature and characteristics of the regolith (relict matter?),
- difference in characteristics of the surfaces of Phobos and Deimos,
- low density,
- internal structure,
- peculiarity of the orbital and proper motion,
- dust tori ?

Scientific objections

- study physical and chemical characteristics of the Phobos regolith and subsurface layers in situ and under laboratory conditions these data can provide information on properties of primordial matter of the Solar system;
- study of the role played by asteroidal impacts in the formation of terrestrial planets, in the evolution of their atmospheres, crusts, and inventories of volatiles;
- **study of the origin of the Martian satellites and their relation to Mars** these data can help in our understanding of their evolution and the origin of satellite systems near other planets;
- search of possible trace of life or paleolife;
- **study of peculiarities of orbital and proper motion of Phobos**, what is important for understanding their origin, internal structure, celestial mechanics applications;
- **study physical conditions of the Martian environment** (dust, gas, plasma components) what is important to study of treatment processes of small body regolith under influence of external conditions and creation of engineering model of the Martian environment for future Martian missions;
- Monitoring of dynamic of the Martian atmosphere and seasons climate changing.

PHOBOS SAMPLE RETURN MISSION PROFILE

Launch of the spacecraft and transfer into the interplanetary trajectory

The Earth-Mars Flight

DSN

Bear Lake (Moscow), Ussuriisk, Evpatoria

3 corrections

 $\Sigma V = 45-60 \text{ m/s}$

LAVOCHKIN ASSOCIATION, APPLY MATH INSTITUTE

Insertion into the first Martian orbit

Orbits around Mars

SC at the QSO

Approaching Phobos and landing

LAVOCHKIN ASSOCIATION, APPLY MATH INSTITUTE

Shaping of the return sc orbits

LAVOCHKIN ASSOCIATION, APPLY MATH INSTITUTE

Entry into the atmosphere and landing at the surface of the Earth

LAVOCHKIN ASSOCIATION

MAIN CHARACTERISTICS OF THE MISSION

Launch site	Baikonur Cosmodrome
Interplanetary Earth – Mars cruise time	10 – 11.5 months
Interplanetary Mars – Earth cruise time	10.5 – 11.5 months
Mission total time	~ 33-34 months
SC mass	8,120 kg
Scientific equipment mass	50 kg
Phobos soil samples mass	0.2 kg

P H O B O S SAMPLE RETURN SC MARS ORBIT INSERTION CONFIGURATION

Payload

Instruments for sc navigation and sampling

TV-system Mechanical device for sampling

Instruments for study of Phobos regolith and internal structure

Panoramic camera Gas-chromatograph Messbauer spectrometer Gamma-spectrometer Neutron spectrometer Laser TOF spectrometer Mass-spectrometer of secondary ions IR spectrometers Thermoprobe Long wave radar Seismometer

Instruments for Martian environment study

Plasma, waves and magnetic field detectors Dust particles detector

Cooperation – IKI, "RAROS", Lavochkin Association

Cooperation - Mainz University, Germany, IKI,

Gas-Chromatograph Complex

- to measure of the quantity of individual gas components in a complex gas mixture, which is evolved from the soil sample by pyrolysis, due to their separation by the time of retention in a chromatographic columns and detection by TCD sensor.
- to identify chemical composition of gas components by their calibrated time of retention and by spectros copy of specific absorption lines for H_2O , CO_2 , and CH_4 gases.
- to measure isotopic composition of C, H, and O elements by spectroscopy of specific absorption lines for H₂O and CO2 gases.

Nucler – physical experiments

The study of the Phobos rocks chemical composition The measurement of the chemical elements concentration on the Phobos surface: the rock-formed elements (from H to Fe) and the natural radioactive (K, Th, U) ones.

Range of measurements 0,3 - 9,0 MeV resolution – 1-2 % Mass 5,5 kg Cooperation: GEOHI, SNIIP

NEURTON SPECTROMETER HEND

1 – module of scintillation detector
2 – module of neutron counter
with moderator
3 – module of counters of thermal and epithermal neutron
4 –module of gammaspectrometer

Scientific tasks:

- studying composition of Phobos regolith;

- searching of hydrated materials or / and water ice on the subsurface of Phobos;

- development of physical model of radiation background on the surface of Phobos and on Martian orbits

Range of measurement::

- Neutrons 0.4 eV 15.0 MeV
- Gamma-rays 100 keV 10 MeV

Energy resolution of LaBr3 crystal 3% for 662 keV (size h=5,08cm d=5,08cm).

Cooperation: IKI

Mass spectrometry

IR - spectroscopy

Fourier Spectrometer Thermal Infrared Multispectral Mapper AOST TIMM Measurements of the Phobos thermal radiance in 35 spectral channels. The instrument produces spectral images up to 40x40 pixels. Each pixel represents the interferogram of the corresponding surface on Phobos. By means of Fourier analysis, each interferogram is transformed to a spectrum. Study surface mineralogy and physical properties of Phobos using multi-spectral thermal-infrared images (7 - 15 μ m). Mapping Phobos in both day and night multi-spectral infrared images at 0.4-1.0 km per pixel resolution. The specific objectives (1) determine the mineralogy and petrology of localized deposits (1) study the surface temperature and thermal inertia. **TIMM is imaging Fourier** Spectral range 2,5 – 25 µ interferomete resolution: 0.45 cm⁻¹ Spectral range: 625 - 1333 cm⁻¹ Field of view - 2.3 deg Mass 4 kg Resolution 20 cm⁻¹ Mass 2,5 kg

Кооперация: IKI, Italy, Germany, France

Cooperation IKI, Italy

TV cameras

TV system for observation and navigation TSNN	Panoramic TV camera PANCAM				
F = 500 и 18 мм Field of view 0,85x0,85 и 23,2 x 23,2 mass 1,8 и 1,2 kg Characteristics of the matrix	resolution 3 arc min. Dynamic range 1000 Field of view 60x360 grad Spectral chanals 0.45± 0.05 0.65±0.05 0.95±0.05 Matrix 1280x1024 pix Matrix 1280x104 pix Matrix 1280x1				
Kodak-1020 1004 x 1004 Size of the elements, µм 7,4 x 7,4 Spectral range, µм 0,4 – 1,0					

Sounding instruments

Investigation of the Martian environment

Celestial mechanic experiments

INVESTIGATION OF PROPER AND FORCED LIBRATION OF PHOBOS LIBRATION	ULTRASTABLE OSCILLATOR USO					
 Investigation of internal structure of Phobos: Inhomogeneity of the body Center of mass and momentum of inertia Average density Proper and forced motion 	 refinement of solar system parameters (astronomical unit, orbital parameters of Mars and Phobos); experimental estimation of Phobos lifetime on its orbit; determination of the mass distribution inside Phobos; refinement of masses of large asteroids from main belt; refinement of experimental limit of the constancy (or detection of time variations) of universal gravitational constant; 					
Resolution: - obscure camera 1 arc min. - obscure camera 1 arc min. - obscure camera 1 arc min. - obscure camera 1 arc min.	 refinement of the geometrical connection of dynamical coordinate system with origin in solar system center of mass and quasar coordinate system based on the measurements of relative angular coordinates of quasars. 					
Kamepa Number of obscure cameras 7 Field of view – half of sphere matrix 1280 x 1024 pix	USO - RADIO SYSTEM GROUND BASED STATION FREQUANCY STANDART					
	stability 10 ⁻¹²					
Cooperation: – IKI, INFRATRON, LITMO	Cooperation: IKI, MARION					

Relevance of the instruments to the mission scientific objectives

Instruments Science fields	Panoramic camera	Manipulator	Chromatograph	Gamma spectrom.	Neutron spectrom/	Seismometer	Long Wave Radar	Dust Detector	Plasma, waves, field
Morphology	+	+							
Geochemistry		÷	+	+	+				
Internal structure						+	+		
Martian environment								+	+