

Search for the signs of atmosphere-surface interactions during Martian year from OMEGA/Mars Express data

Evdokimova N. A.¹, Rodin A. V.^{1,3}, Kuzmin R. O.^{1,2}, Fedorova A. A.¹

¹-IKI, Moscow; ²- Vernadsky institute, Moscow;
³ – Moscow Institute of Physics & Technology, Moscow

NIR OMEGA spectra (1-2.7 µm, C channel)

- Observations of the North polar cap during MY27 aphelion campain
- Water ice microstructure retrievals
- Tracking its seasonal changes
- Identification of zonal variations associated with atmospheric processes
- Search for traces of the atmospheric planetary waves

OMEGA – mapping spectrometer for visible and near-IR spectral ranges

Overview

• 3 detectors:

0.364-1.070 µm (VNIR) /96 channels

0.926-2.695 µm (C) /128 channels

2.527-5.089 µm (L) /128 channels

• instantaneous field of view

IFOV ~ 4.1 arcmin (1.2 mrad)

• Spectral resolution

 $\lambda/\Delta\lambda \sim 70-200$

- highest spatial resolution
- ~ 300 meters (periapsis)
- Cross-track swaths are
- 16, 32, 64 and 128 pixels wide

Typical modes of observations.

Maximum altitude, km	300	1500	4000
"Pixel" size	<360m	<1.8km	<4.8km
Track width, pixel	16	64	128
Track width, km	5-7	60-120	300-600
Track length, pixel	~ 7500	~ 2000	~ 1000
Track lenght, km	~ 3000	~ 3000	~ 3000
Session duration, min	~ 12	~ 12	~ 24

Methodology

- Mapping spectral features marking ices
- Use synthetic indices rather than retrieve abundances: 1.2, 1.5, 2.0 μm
- Work with calibrated radiances rather than relative spectra
- Ad hoc atmospheric corrections

Spectral index:

$$Index = \frac{S(ABCD) - S1}{S(ABCD)}$$

Correction on atmospheric absorption

•MOLA topography
•CO₂: p,T – from European Mars Climate Database
•H₂O column (Ls, φ) - from TES observations
•H₂O (φ, I, z) – from GFDL MGCM model
•HITRAN(2004)

Errors and uncertainities

Due to the instrument

- Dark noise
- Point-spread function error
- Calibration error
- Digitalization error
- Pixel-to-pixel non-linearity
- Degradation of spectral channels

Errors due to models

- Ones due to solar spectrum model
- Due to atmospheric model

Errors and uncertainities

Due to the instrument

- Dark noise ~0.3%
- Point-spread function error -> atm. model error
- Calibration error ~1%
- Digitalization error ~0.3%
- Pixel-to-pixel non-linearity ~0.5%
- Degradation of spectral channels ?

Errors due to models

- Ones due to solar spectrum model ~0.5%
- Due to atmospheric model ~0.2%

Wide adsorption bands, µm	1.2	1.5	2
Index error, %	2.1	1.45	1.5

North polar cap, 1.25 µm, Ls ~113°

North polar cap, 1.25 µm, Ls ~113°

North polar cap, 1.25 µm, Ls ~113°

Index 1.25 µm calibration Index value vs. mean grain size 0.14 0.12 $L_{c} = 134^{\circ}, 11^{\circ}E, 83^{\circ}N$ 0.1 μm index 0.08 L_c = 134°,337°E,85°N 0.06 1.25 0.04 0.02 L = 92°,11°E, 83°N 0 100 10 1000 Mean grain size, μ m $55^{\circ} < SZA < 80^{\circ}$

Index 1.25 µm mode 3: polar cap sublimation

Index 1.25 µm lode 2 and 3: polar cap sublimation

MGCM water vapor column, pr µm

Index 1.25 µm mode 3: polar cap sublimation

90°E

Reflectivity ~1µm

During summer reflectivity is decreasing

-> defrosting

What causes index and albedo variations across terrace?

Mapping Science GeoJP2 Viewer: PSP_009907_2745_COLOR.JP2

(catabatic?) wind

View Help

HiRISE imagery analysis

Conclusions:

Microphysical structure of frost at the North polar cap reveals the signature of stationary atmospheric waves with the leading wavenumber changing from 2 to 3

Evolution in time and phase of these patterns coincide with waver vapor distribution predicted by GCM

Hence, we conclude that North polar cap sublimation is strongly affected by mesoscale wind systems

At the local scale, there is an evidence of changing wind direction across spiral terraces – probably a contribution of catabatic winds