

Дагестанский научный центр Российской академии наук Институт физики Лаборатория вычислительной физики и физики фазовых переходов 367003, Российская Федерация, Махачкала, Ярагского, 94, Институт физики ДагНЦ Г тел: (8722) 62-66-75, (8722) 62-89-00 факс: (8722) 62-89-00 е-mail: m akai@iwt.ru

ФАЗОВЫЕ ПЕРЕХОДЫ В АНТИФЕРРОМАГНИТНОЙ МОДЕЛИ ГЕЙЗЕНБЕРГА НА СЛОИСТОЙ ТРЕУГОЛЬНОЙ РЕШЕТКЕ.

<u>М.К. Рамазанов</u>, А.К. Муртазаев, М.К. Бадиев Институт физики ДагНЦ РАН, 367003, Махачкала, Россия e-mail: sheikh77@mail.ru Исследование ФП и КЯ ФС – предмет интенсивных исследований и дискуссий последних десятилетий!!!!!

Существуют 3 точки зрения:

1.Универсальное поведение ФС.
2.ФП 2 рода и новый класс универсальности КП
3.ФП 1 рода.

Модели фрустрированных систем:

1.Stacked triangular antiferromagnetic lattices (STA) 2.Body centered tetragonal (bct) Helimagnets 3.The simple cubic $J_1 - J_2$ **lattice 4.Villain lattice and fully frustrated simple cubic lattice 5.Face** centered cubic lattice (fcc) **6.Hexagonal-close-packed lattice (hcp) 7.Stacked Triangular Antiferromagnetic lattices with Rigidity** (STAR) 8.Dihedral lattices V_{N.2} 9.Right-handed trihedral lattices V_{3.3}

Антиферромагнитная трехмерная модель Гейзенберга на слоистой треугольной решетке.

Гамильтониан

$$\mathbf{H} = -J\sum_{\langle ij\rangle} (\vec{S}_i \cdot \vec{S}_j) - J'\sum_{\langle ik\rangle} (\vec{S}_i \cdot \vec{S}_k),$$

где \vec{S}_i – трехкомпонентный единичный вектор, $\vec{S}_i = (S_i^x, S_i^y, S_i^z)$

J<0 и *J*′ <0 – константы антиферромагнитного обменного взаимодействия.

Первый член - характеризует взаимодействие всех ближайших соседей, которое берется одинаковой как внутри слоёв, так и между слоями.

Второй член - характеризует взаимодействие вторых ближайших соседей, находящихся в том же слое.

R = J/_I – величина взаимодействия вторых ближайших соседей.

Решетка состоит из двумерных треугольных слоев сложенных по ортогональной оси.

Основное состояние системы для случая 0.125≤R≤1

Интерес к этой модели обусловлен следующими основными причинами:

- 3. Природа ФАЗОВЫХ ПЕРЕХОДОВ и зависимость характера ФП от различных факторов (учета взаимодействия вторых ближайших соседей и др.) ?????

ОБЗОР ЛИТЕРАТУРЫ:

Значения критических показателей для трехмерной антиферромагнитной модели Гейзенберга на слоистой треугольной решетке.

Ссылка	L _{max}	α	β	γ	ν	η	β _k	γk	ν _k		
1	60	0.24(8)	0.30(2)	1.17(7)	0.59(2)	-	0.55(2)	0.72(2)	0.60(2)		
2	36	-	0.285	1.185	0.586	-	0.50(2)	0.82(2)	0.60(2)		
3	48	-	0.289	1.176	0.585	-	-	-	ł		
4	36	-	0.28	-	0.59	-	-	-	-		
5	80	ФП 1 го рода									
6	150	ФП 1 го рода									
7	-	ФП 1 го рода									

1. H. Kawamura, J. Phys. Soc. Jpn. 61, 1299 (1992), 58, 584 (1989), 56,474 (1987)

2. M.L. Plumer and A. Mailhot, Phys. Rev. B 50, 16113 (1994)

3. T. Bhattacharya, A. Billoire, R. Lacaze and Th. Jolicoeur, J. Phys. I (Paris) 4, 181 (1994)

4. D. Loison and H.T. Diep, Phys. Rev. B 50, 16453 (1994)

5. M. Itakura, J. Phys. Soc. Jpn 72, 74 (2003)

6. V. Thanh Ngo and H.T. Diep, Phys. Rev. E 78, 031119 (2008).

7. M. Tisser, B. Delamotte, and D. Mouhanna. Phys.Rev. Lett. 84, 5208 (2000).

Проблемы исследования 1. Критического замедления 2. Многочисленные локальные минимумы энергии. Поведение структуры рельефа свободной энергии при понижении температуры. Пространство состояний

Справиться с трудностями помогают: 1.Репличные алгоритмы метода Монте Крло; 2.Усреднение по начальным конфигурациям.

Метод исследования

Репличные алгоритмы метода МК позволяют избегать замораживания системы в состояниях с минимальной энергией:

- 1. Мультиканонический алгоритм выполняется случайное блуждание по энергетическим минимумам.
- 2. Алгоритм расширенного ансамбля выполняется случайное блуждание в температурном интервале, что стимулирует случайное блуждание по энергетическим минимумам.
- 3. 1/*k*-выборочный алгоритм основан на случайном блуждании по энтропии, которое в свою очередь позволяет стимулировать случайное блуждание в поле потенциальной энергии.
- 4. Репличный обменный алгоритм выполняется случайное блуждание по температурному интервалу.

Наиболее эффективным считается репличный обменный алгоритм.

Репличный обменный алгоритм метода МК

Репличный обменный алгоритм был развит для параллельного моделирования системы при разных температурах.

Преимущество:

Легкость определения вероятности. Эта вероятность пропорциональна больцмановскому фактору.

Недостаток:

Для увеличения эффективности требуется увеличение числа реплик, что требует больших компьютерных мощностей для моделирования сложных систем.

Репличный обменный алгоритм был использован нами в следующем виде: 1. Одновременно моделируются независимо друг от друга обычным методом МК две реплики X и X' с разными температурами T и T'.

2. После выполнения 100 МКшагов/спин эти реплики обмениваются данными в соответствии со схемой Метрополиса с вероятностью $w(X \to X') = \begin{cases} 1, & for \Delta \le 0, \\ exp(-\Delta), & for \Delta > 0, \end{cases}$

где
$$\Delta = \left(U - U'\right) \cdot \left(1/k_B T - 1/k_B T'\right)$$

U и U'- внутренняя энергия первой и второй реплики соответственно. T и T' - температуры реплик.

Рассчитываемые параметры:

Магнитный параметр порядка:

M_A, *M_B* и *M_C* - намагниченности трех подрешеток, соответственно.

Киральный параметр порядка:

p=(*x*,*y*,*z*) – нумерует треугольные плакеты Киральная

восприимчивость:

$$m = \frac{3}{N} \sqrt{\left\langle M_A^2 + M_B^2 + M_C^2 \right\rangle / 3}$$

$$\left\langle \left| \vec{M}_{r} \right| \right\rangle = \left\langle \sqrt{S_{x}^{2} + S_{y}^{2} + S_{z}^{2}} \right\rangle$$

r = A, B, C

$$m_k = \frac{1}{n} \sum_p m_{k_p}$$

$$m_{kp} = \frac{2}{3\sqrt{3}} \sum_{\langle ij \rangle} \left[S_i \times S_j \right]_p$$

$$\chi_{k} = \begin{cases} (NK) \left(\left\langle m_{k}^{2} \right\rangle - \left\langle \left| m_{k} \right| \right\rangle^{2} \right), T < T_{k} \\ (NK) \left\langle m_{k}^{2} \right\rangle, \qquad T \ge T_{k} \end{cases}$$

 $\mathbb{R}=0$

Зависимость магнитного m и кирального параметра порядка m_k от температуры $k_B T//J/$.

Зависимость теплоемкости и восприимчивости от температуры $k_B T//J/$.

ФП первого рода характеризуются следующими отличительными особенностями:

1. Величина V_L стремится к некоторому нетривиальному значению V* согласно выражению $V_I = V^* + bL^{-d}$ при $L \to \infty$ и $T = T_N(L)$, где величина V* отлична от 2/3.

2. Максимумы теплоемкости С и восприимчивости χ пропорциональны объему L^d , где d – размерность системы.

Зависимость максимума восприимчивости χ_{max} от L.

$$$$

Анализ данных на основе теории (КРС)

 $m_k \propto L^{-\beta_k/\nu_k}$

 $\chi_k \propto L^{\gamma_k / \nu_k}$

$$V_{nk} = L^{1/\nu_k} g_{\nu_n}$$

$$V_{ki} = \frac{\left\langle m_k^{\ i} E \right\rangle}{\left\langle m_k^{\ i} \right\rangle} - \left\langle E \right\rangle$$

(*i*=1, 2, 3, 4).

Для определения киральных критических параметров

Зависимость параметра V_i от линейных размеров системы L при T=T_N.

$$V_n = L^{1/\nu} g_{V_n}$$

$$g_{V_n} = Const$$

Зависимость теплоемкости и магнитного параметра порядка от линейных размеров системы L при T=T_N.

α=0.18(2)

Зависимость восприимчивости и кирального параметра порядка от линейных размеров системы L при T=T_N.

Зависимость величины χ/L² от линейных размеров системы L при T=T_N.

Значения критических параметров для трехмерной антиферромагнитной модели Гейзенберга на слоистой треугольной решетке.

КП	Наши данные	Теория]	Метод М	Эксп-т	Чистая модель	
T_N	0.957(1)	-	-	÷.	-	0.954(2)	0.955(2)	0.9577(2)	4	1.443
T_k	0.955(2)	-	-	-	-	-	0.958(2)	0.9577(2)	4	-
ν	0.65(1)	0.63	0.53	0.55	0.63(5)	0.53(3)	0.59(2)	0.586(8)	0.54(3)	0.7112(5)
α	0.18(2)	0.11	-	0.35	-	0.4(1)	0.24(8)	-	0.39(9)	-0.1336(1)
β	0.30(2)	0.31	0.28	0.30	-	0.25(2)	0.30(2)	0.285(11)	0.25(1)	0.3689(3)
γ	1.27(2)	1.26	1.03	1.06	1.20(8)	1.1(1)	1.17(7)	1.185(3)	1.10(5)	1.3960(9)
ν_k	0.65(2)	-	1	-	-	-	0.60(2)	0.60(2)	-	-
β_k	0.53(2)	-	-	-	-	-	0.55(2)	0.50(2)	0.44(2)	-
γ_k	0.84(4)	-	-	-	-	-	0.72(2)	0.82(2)	0.84(7)	-
η	-0.06(3)	0.0	0.072	0.08	0.08(3)	-	-	-	-	0.0375(5)
η_k	0.63(4)	-	-	-	-	-	-	-	-	-

Зависимость теплоемкости и восприимчивости от температуры $k_B T//J/$ для разных *R*.

величина взаимодействия вторых ближайших соседей

$$R = J'_J$$

Зависимость магнитного и кирального параметра порядка от температуры $k_B T//J/$ для разных *R*.

Энергетические гистограммы для R=0 и R=0.4

Наличие двойного максимума на энергетической гистограмме является достаточным условием для ФП первого рода

Энергетические гистограммы для R=0.075 и R=0.126

ВЫВОДЫ:

- 1. Показано, что в 3d фрустрированной модели Гейзенберга на слоистой треугольной решетке для решеток малого размера (L≤30) имеет место фазовый переход 2 рода и модель принадлежит к новому классу универсальности критического поведения.
- 2. Обнаружено, что в этой модели для решеток больших размеров (L≥90) имеет место фазовый переход 1 рода.
- 3. Установлено, что в интервале значений величины взаимодействия вторых ближайших соседей 0.0≤ R ≤1.0 в системе наблюдается фазовый переход 1 рода.

<u>СПАСИБО</u> <u>ЗА ВНИМАНИЕ</u>