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NORMAL FORMS



Resonances near fixed points of maps

Consider a map

x 7→ Ax + V (x), V = O(|x |2), x ∈ Rn

where A is a linear operator. Assume that V is analytic in some neighborhood
of 0.
We use the notation: λj , j = 1, 2, . . . , n are eigenvalues of A (multipliers of
fixed point 0), λ = (λ1, λ2, . . . , λn) , m = (m1,m2, . . . ,mn),
|m| = |m1|+ |m2|+ . . .+ |mn|, λm = λm1

1 λm2
2 · · ·λmn

n .

Definition
The set of eigenvalues of the operator A is called a resonant one if a relation
of the form

λs = λm,

is satisfied, where components of m are integer non-negative, |m| ≥ 2. This
relation is called a resonance relation or just a resonance. The value |m| is
called an order of the resonance.



Resonant monomials, resonant normal form near fixed point

Assume that eigenvalues λ1, λ2, . . . , λn of the operator A are all different. So,
the the eigenvectors e1, e2, . . . , en of the complexified operator A form a basis
in Cn.

Let some system S of resonance relations be given. We will assume that S
contains all resonance relations which can be derived from any subsystem of S.

Definition
A vector monomial xmes is called a resonant one for resonances in S if the
resonance relation λs = λm is presented in the system S.

Definition
A map

x 7→ Ax + . . .

is said to be in the resonant normal form for resonances from S if the nonlinear
part of its right hand side is a sum of resonant vector monomials.



Reduction to resonant normal form near fixed point

Theorem
If multipliers of a fixed point do not satisfy resonance relations up to an order
N inclusively except, may be, resonances from S, then by a polynomial real
close to the identical transformation of variables

x = y + O(|y |2)

the system is reducible to the form

y 7→ Ay + w(y) + O(|y |N+1)

were w is a sum of resonant vector monomials of degrees not exceeding N.

Thus, the system without the term O(|y |N+1) (also called a truncated system )
is in a resonant normal form.

Corollary

If there are no resonances of any order, except, may be, resonances from S,
then a formal transformation of variables reduces the original system to a
system in a formal resonant normal form.



Reduction to resonant normal form near fixed point

Procedure of reduction to resonant normal form near fixed point is analogous
to that near an equilibrium
The map under consideration has the form

x 7→ Ax + V (x), V (x) = v2(x) + v3(x) + . . .+ vN(x) + O(|x |N+1)

where vr (x) is the homogeneous vector polynomial of x of degree r .
We are looking for a transformation of variables x 7→ y of the form

x = y + h(y), h(y) = h2(y) + h3(y) + . . .+ hN(y)

which reduces the map to the form

y 7→ Ay + w(y) + O(|y |N+1), w(y) = w2(y) + w3(y) + . . .+ wN(y)

where hr (y),wr (y) are homogeneous vector polynomials of y of degree r , and
wr (y) contains only resonant monomials.
Plugging the transformation of variables into original map, assuming that the
transformed map has required form and equating terms of order r we get a
homological equation

hr (Ay)− Ahr (y) = Vr (y)− wr (y)

where Vr is the homogeneous vector polynomial of degree r whose coefficients
are expressed through coefficients of v2, . . . , vr , h2, . . . , hr−1, w2, . . . ,wr−1.

Take as wr (y , t) the sum of resonant monomials in Vr (y , t).



Reduction to resonant normal form near near fixed point, continued

Lemma
For this choice of wr the homological equation has a solution hr in the form of
a sum of non-resonant monomials. The solution in such form is a unique.

Proof.
Let e1, e2, . . . , en be eigenvectors of the complexified operator A, that
correspond to the eigenvalues λ1, λ2, . . . , λn. The eigenvalues of A are all
different, and so the eigenvectors form a basis in Cn. Let y1, y2, . . . , yn be
coordinates of y in this basis. Denote Ur (y) = Vr (y)− wr (y). Then

Ur =
X

s=1,...,n; |m|=r

Us,mymes , h =
X

s=1,...,n; |m|=r

hs,mymes

Equating in the homological equation the coefficients in front of ymes , we get

(λm − λs)hs,m = Us,m

Thus, hs,m = Us,m/(λ
m − λs). If y is real, then h(y) is real. This completes the

proof.



Example: normal form for period-doubling bifurcation

The period-doubling bifurcation is a local bifurcation which takes place in
generic ODEs and maps when a periodic trajectory (or a fixed point, for a
map) loses stability as a real multiplier crosses the unit circle in the complex
plane in the point −1 . For maps it is called also the flip bifurcation.

Consider a one-dimensional map (n = 1). General case reduces to this one by
means of Shoshitaisvili reducton principle. Assume that λ = −1 + δ, where δ is
small.

The resonance relation λ = λm for λ = −1 gives m = 2k + 1, k = 1, 2, . . ..
Therefore, the map can be transformed to the form

y 7→ (−1 + δ)y + ay 3 + O(y 5)

Denote M the truncated map, M(y) = (−1 + δ)y + ay 3. Consider square of
this map

M2(y) = M((−1+δ)y+ay 3) = (−1+δ)((−1+δ)y+ay 3)+a((−1+δ)y+ay 3)3 =
(1− 2δ + δ2)y + a(−2 + 2δ)y 3 + O(y 5)

We will consider generic case: a 6= 0.
The bifurcation diagram is the same as for the map M̃2 : y → (1− 2δ)y − 2ay 3.
Map M̃2 has the fixed point at y = 0 and, when δ has sign opposite to that of
a, two fixed points at y = ±

p
−δ/a. These two fixed points of the map M̃2

correspond to the periodic trajectory of period 2 of the map M.
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Example: normal form for period-doubling bifurcation, continued

For a > 0 the phase portrait in the plane δ, y looks as follows:

This is a supercritical case.

The bifurcation diagram looks as follows
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Example: normal form for period-doubling bifurcation, continued
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This is a subcritical case.

The bifurcation diagram looks as follows

These diagrams describe also period-doubling bifurcation for periodic
trajectories of ODEs.
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Example: normal form for period-doubling bifurcation, continued
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Example: picture of period-doubling cascade

Here is picture of period doubling cascade for logistic map x 7→ rx(1− x)
(source: Wikipedia). Point of accumulation of period doublings is r ≈ 3.57.



About explanation of Feigenbaum’s universality

The detailed explanation of existence of period-doubling cascade and the
Feigenbaum universality was given first for a certain class M of non-invertible
one-dimensional maps.

M. Feigenbaum have introduced nonlinear non-invertible operator J : M→M
with the following property: Jf is topologically equivalent to f ◦ f for any
f ∈M. So, if Jf has a periodic orbit of a period N, then f has a periodic orbit
of the period 2N. This operator is called the doubling operator. This operator
perform a renormalisation in M.

It turned out that this operator has a fixed point f∗. All multipliers of this fixed
point are situated inside the unit circle but one which is real and bigger than 1;
the value of this multiplier is the Feigenbaum constant µF .

Denote W u and W s the unstable and stable manifold of the fixed point f∗.
Near f∗ the action of J on W u is approximately as follows:
Mf = µF f , f ∈ W u. Near W u the operator M is invertible.

On the other hand, in M there is a surface Σ of maps having a fixed point
with multiplier (−1). This is a surface of codimension 1. It turns out that W u

transversally crosses Σ. The surfaces J−kΣ ( preimages of Σ), accumulate on
W s as k →∞. The surface J−kΣ is composed of maps having a periodic orbit
of period 2k with multiplier (−1). Lengths of segments between successive
intersections of W u and J−kΣ decay in geometric progression with the
common ratio µF as k →∞.
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About explanation of Feigenbaum’s universality, continued

The structure of M in a neighborhood of f∗ looks as follows:

Now consider a one parametric family of maps fα ∈M, α ∈ R. This family
forms a curve in M. Assume that this curve crosses W s not far from f∗. Then
it should cross all J−kΣ with big enough k. This implies existence of the
infinite cascade of period doublings.

Lengths of segments between successive intersections of this curve and J−kΣ
decay in geometric progression with the common ratio 1/µF as k →∞. This
implies the universality.
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it should cross all J−kΣ with big enough k. This implies existence of the
infinite cascade of period doublings.

Lengths of segments between successive intersections of this curve and J−kΣ
decay in geometric progression with the common ratio 1/µF as k →∞. This
implies the universality.
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infinite cascade of period doublings.

Lengths of segments between successive intersections of this curve and J−kΣ
decay in geometric progression with the common ratio 1/µF as k →∞. This
implies the universality.



LECTURE 15



NORMAL FORMS



C∞ and finitely smooth normal forms

Consider an ODE
ẋ = Ax + O(|x |2), x ∈ Rn

where A is a linear operator. Assume that the right hand side of this ODE is of
smoothness C∞ in some neighborhood of 0. Let λ = (λ1, λ2, . . . , λn) be the
vector of eigenvalues of A.
In this theory it is supposed that the equilibrium is hyperbolic (all eigenvalues
have non-zero real parts).

Theorem (S.Sternberg)

If the equilibrium is hyperbolic and non-resonant, then by a real close to the
identical C∞ smooth transformation of variables

x = y + O(|y |2)

the system is reducible to the form

ẏ = Ay



C∞ and finitely smooth normal forms, continued

Let S be some system of resonance relations, i.e. relations of the form

λs = m1λ1 + m2λ2 + . . .+ mnλn,

with integer non-negative m1,m2, . . . ,mn such that
nP

j=1

mj ≥ 2.

Theorem (K.T.Chen)

If the equilibrium is hyperbolic and its eigenvalues do not satisfy resonance
relations except, may be, resonances from S, then by a real close to the
identical C∞ smooth transformation of variables

x = y + O(|y |2)

the system is reducible to the form

ẏ = Ay + w(y)

were formal Tailor series for w is in the formal normal form for resonances from
S.



C∞ and finitely smooth normal forms, continued

Consider an ODE
ẋ = Ax + O(|x |2), x ∈ Rn

where A is a linear operator. Assume that the right hand side of this ODE is of
smoothness C∞ in some neighborhood of 0.

Theorem (S.Sternberg)

If the equilibrium is hyperbolic, then for any natural k there exists natural
N = N(A, k) such that if the eigenvalues of the equilibrium do not satisfy any
resonance relations up to order N inclusively, then by a real close to the
identical C k smooth transformation of variables

x = y + O(|y |2)

the system is reducible to the form

ẏ = Ay

Remark
The same result is valid for systems of smoothness C r , r > N(A, k).



C∞ and finitely smooth normal forms, continued

Let S be some system of resonance relations.

Theorem (G.R.Belitskii-V.S.Samovol)

If the equilibrium is hyperbolic, then for any natural k there exists natural
N = N(A, k) such that if the eigenvalues of the equilibrium do not satisfy any
resonance relations up to order N inclusively, except, may be, resonances from
S, then by a real close to the identical C k smooth transformation of variables

x = y + O(|y |2)

the system is reducible to the form

ẏ = Ay + w(y)

were w is a vector polynomial of degree not exceeding N having normal form
for resonances from S.

Remark
The same result is valid for systems of smoothness C r , r > N(A, k).



SOME NONLOCAL BIFURCATIONS



Birth of cycle at homoclinic loop of a saddle in planar system

The bifurcation under consideration looks like this:



Birth of cycle at homoclinic loop of a saddle in planar system, continued

Consider a two-dimensional system

ẋ = v(x , α), x ∈ R2, α ∈ R1

right hand side of the system is smooth enough.
Let for α = 0 the the system has a saddle equilibrium at x = 0 and homoclinic
loop Γ0.

Then for all small α the system has the saddle equilibrium near x = 0. Without
loss of generality we may assume that this equilibrium is at x = 0.
Let λ1(α), λ2(α) be eigenvalues of this equilibrium, λ1(α) < 0 < λ2(α). Their
sum σ(α) = λ1(α) + λ2(α) is called the saddle quantity.



Birth of cycle at homoclinic loop of a saddle in planar system, split function

Let Σ be an oriented segment transversal to Γ0.
Denote W s = W s(α), W u = W u(α) the stable and the unstable manifolds of
our saddle equilibrium (they exist according to Hadamard-Perron theorem).
Denote ps(α), pu(α) the points of the first intersection of Σ with W s and W u

respectively.

Denote ρ(α) the oriented distance between pu(α) and ps(α). The picture
corresponds to the case ρ(α) > 0. The function ρ(·) is called the split function.



Birth of cycle at homoclinic loop of a saddle in planar system,
A.A.Andronov and E.A.Leontovich theorem

Theorem (A.A.Andronov and E.A.Leontovich)

Consider a two-dimensional system

ẋ = v(x , α), x ∈ R2, α ∈ R1

Let for α = 0 the the system has a saddle equilibrium at x = 0 with eigenvalues
λ1(0) < 0 < λ2(0) and homoclinic loop Γ0. Assume that the following
genericity conditions hold:
a) σ(0) = λ1(0) + λ2(0) 6= 0, and
b) dρ(0)/dα 6= 0, where ρ(·) is the previously defined split function.
Then, for all sufficiently small |α|, there exists a neighborhood of Γ0 in which a
unique limit cycle bifurcates from Γ0. Moreover, the cycle is stable and exists
for ρ(α) > 0 if σ(0) < 0, and is unstable and exists for ρ(α) < 0 if σ(0) > 0.

Remark
The condition dρ(0)/dα 6= 0 is equivalent to the conditionZ +∞

−∞
exp

»
−
Z t

0

divv dt

–„
v1
∂v2

∂α
− v2

∂v1

∂α

«
dt 6= 0

where all expressions involving v = (v1, v2) are evaluated at α = 0 along a
solution corresponding to the homoclinic orbit Γ0.
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a) σ(0) = λ1(0) + λ2(0) 6= 0, and
b) dρ(0)/dα 6= 0, where ρ(·) is the previously defined split function.
Then, for all sufficiently small |α|, there exists a neighborhood of Γ0 in which a
unique limit cycle bifurcates from Γ0. Moreover, the cycle is stable and exists
for ρ(α) > 0 if σ(0) < 0, and is unstable and exists for ρ(α) < 0 if σ(0) > 0.

Remark
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−∞
exp

»
−
Z t

0

divv dt

–„
v1
∂v2

∂α
− v2

∂v1

∂α

«
dt 6= 0

where all expressions involving v = (v1, v2) are evaluated at α = 0 along a
solution corresponding to the homoclinic orbit Γ0.



Birth of cycle at homoclinic loop of a saddle in planar system,
A.A.Andronov and E.A.Leontovich theorem, continued



Scheme of proof of A.A.Andronov and E.A.Leontovich theorem

To find a limit cycle we will look for a fixed point of Poincaré return map. This
map is the composition of two maps: singular map, which correspond to pass
of trajectory near the saddle point, and regular map which correspond to
remaining part of trajectory.

Near the saddle one can make smooth transformation of variables x 7→ y such
that W u and W s will have equations y1 = 0 and y2 = 0 respectively.

The equations in the new variables have the form

ẏ1 = (λ1 + O(|y1|+ |y2|))y1, ẏ2 = (λ2 + O(|y1|+ |y2|))y2



Scheme of proof of A.A.Andronov and E.A.Leontovich theorem, continued

Near the origin the behavior of trajectories of our system is close to behavior of
a linear system The phase flow determines the map of a segment
Σ+

1 = {y1 = δ1, 0 < y2 < κ1} to a segment Σ+
2 = {y2 = δ2, 0 < y1 < κ2}. Here

δ1,2, κ1,2 are small enough positive constants. Denote corresponding map as
Qsing . Approximate formula for Qsing is the formula for analogous map in the

linearised system, y2 7→ y1 = cy
−λ1/λ2
2 , c = const > 0.

The phase flow determines also the map of Σ+
2 to Σ1 = {y1 = δ1, |y2| < κ1}.

Denote corresponding map as Qreg . Approximate formula for Qreg is
y1 7→ y2 = aρ+ dy1, where a > 0 and d > 0 are constants. So, the
composition Q = Qreg ◦ Qsing maps Σ+

1 to Σ1, and the approximate formula for

Q is y2 7→ aρ+ by
−λ1/λ2
2 , where a and b are positive constants.



Scheme of proof of A.A.Andronov and E.A.Leontovich theorem, continued

The approximate equation for fixed point of the map Q is

ξ = aρ+ bξ−λ1/λ2 , ξ > 0

If σ(0) = λ1(0) + λ2(0) < 0, then for small enough α we have −λ1/λ2 > 1.
Then for small ρ > 0 the equation for fixed point has a unique solution in the
domain of small ξ. In this case there are no such solutions for small ρ < 0. So,
we have a unique limit cycle if α is small and ρ(α) > 0. This cycle is stable.



Scheme of proof of A.A.Andronov and E.A.Leontovich theorem, continued

If σ(0) = λ1(0) + λ2(0) > 0, then for small enough α we have −λ1/λ2 < 1.
Then for small ρ < 0 the equation for fixed point has a unique solution in the
domain of small ξ. In this case there are no such solutions for small ρ > 0. So,
we have a unique limit cycle if α is small and ρ(α) < 0. This cycle is unstable.



Shilnikov chaos

Consider a three-dimensional system

ẋ = v(x , α), x ∈ R3, α ∈ R1

right hand side of the system is smooth enough.
Let for α = 0 the the system has a saddle-focus equilibrium at x = 0, i.e. for
this equilibrium one eigenvalue λ1(0) is real and two eigenvalues λ2,3(0) are
complex conjugate, λ2,3(0) = γ ± iω. Let for α = 0 the the system has
homoclinic trajectory Γ0 (picture from the paper of L.P.Shilnikov and
A.L.Shilnikov in Scholarpedia):



Shilnikov chaos, continued

Theorem (L.P.Shilnikov )

Suppose that a three-dimensional system

ẋ = v(x , α), x ∈ R3, α ∈ R1

has at α = 0 a saddle-focus equilibrium point x = 0 with eigenvalues
λ1(0) > 0 > Reλ2,3(0) and a homoclinic trajectory Γ0. Assume that the
following genericity conditions hold:
a) σ(0) = λ1(0) + Reλ2,3(0) > 0, and
b) Imλ2,3(0) 6= 0.
Then, the system has an infinite number of saddle periodic trajectories in a
neighborhood of Γ0 for all sufficiently small |α|.

Remark
For saddle-focus equilibria in 3D the sum of the real eigenvalue and the real
part of the complex eigenvalue is called the saddle quantity.



Shilnikov chaos, continued

Assume that instead of condition a) in the Shilnikov theorem we have
σ(0) = λ1(0) + Reλ2,3(0) < 0. If when α changes the unstable manifold of the
equilibrium passes transversally through the stable manifold, then the
bifurcation diagram looks like this (L.P.Shilnikov, picture from:
Yu.A.Kuznetsov, “Elements of applied bifurcation theory”, β = β(α) is the
split function)

For β < 0 there are no periodic trajectories near Γ0. For β > 0 there is a
unique periodic trajectory near Γ0.



Exercises

Exercises

1. Prove that the condition dρ(0)/dα 6= 0 is equivalent to the conditionZ +∞

−∞
exp

»
−
Z t

0

divv dt

–„
v1
∂v2

∂α
− v2

∂v1

∂α

«
dt 6= 0

where all expressions involving v = (v1, v2) are evaluated at α = 0 along a
solution corresponding to the homoclinic orbit Γ0.



LECTURE 16



NORMAL FORMS OF HAMILTONIAN

SYSTEMS



Comparison with normal forms theory for general systems

What is special in the normal forms theory for Hamiltonian systems with
respect to the case of general systems?

I From the viewpoint of the “general” theory equilibria and periodic
trajectories in Hamiltonian systems and fixed points of symplectic maps
are all resonant ones. Indeed, e.g. for equilibria, if λ1 is an eigenvalue of
an equilibrium for a Hamiltonian system, then λ2 = −λ1 is also an
eigenvalue. So, infinite number of resonance relations of the form
λs = λs + k(λ1 + λ2) are satisfied.

I For a Hamiltonian system we will perform reduction to normal forms by
means of canonical symplectic transformations of variables and thus will
work with Hamilton’s function rather than with equations of motions

I If the Hamiltonian system is in a normal form, then the order reduction
can be performed easily (order reduction for the case of general systems in
normal form is also possible (A.D.Bryuno), but it is essentially more
complicated).



Canonical transformations

The canonical Hamiltonian system with the Hamilton function H is the ODE
system of the form

ṗ = −
„
∂H

∂q

«T

, q̇ =

„
∂H

∂p

«T

Here p ∈ Rn, q ∈ Rn, p and q are considered as vector-columns, H is a
function of p, q, t, the superscript “T” denotes the matrix transposition.
Variables p, q are called canonical variables. Components of p are called
“impulses”, components of q are called “coordinates”.

Symplectic (or canonical symplectic) transformation of variables with the
generating function S(P, q, t), depending on the new impulses and the old
coordinates, is the transformation of variables which is implicitly defined by the
formulas

p =

„
∂S(P, q, t)

∂q

«T

, Q =

„
∂S(P, q, t)

∂P

«T

Behavior of new variables P,Q is described by the Hamiltonian system with the
Hamilton function

H = H +
∂S(P, q, t)

∂t
Example

For (p, q) ∈ R2 the transformation (p, q) 7→ (ρ, ϕ) defined by formulas
p =

√
2ρ cosϕ, q =

√
2ρ sinϕ is a symplectic transformation.



Resonances near equilibria of autonomous system

Let the origin of coordinates be an equilibrium position of an analytic
autonomous Hamiltonian system with n degrees of freedom. Suppose that the
eigenvalues of the quadratic part of the Hamiltonian in a neighbourhood of the
equilibrium position are all distinct and purely imaginary. Then the Hamilton
function can be represented in the form

H = 1
2
Ω1(p

2
1 + q2

1) + 1
2
Ω2(p

2
2 + q2

2) + . . .+ 1
2
Ωn(p

2
n + q2

n) + H3 + H4 + . . .

where Hm is a form of degree m in the phase variables p, q.

Definition
The eigenfrequencies Ω1,Ω2, . . . ,Ωn satisfy a resonance relation of order l > 0
if there exist integers ki such that k1Ω1 + . . .+ knΩn = 0 and
|k1|+ . . .+ |kn| = l .

For example, Ω1 = Ω2 is a resonance relation of order 2.



Normal form in absence of resonances

Definition
A Birkhoff normal form of degree L for the Hamiltonian is a polynomial of
degree L in canonical phase variables P,Q that is actually a polynomial of
degree [L/2] in the variables ρi = 1

2
(P2

i + Q2
i ).

Example

For a system with two degrees of freedom,

H = Ω1ρ1 + Ω2ρ2 + 1
2
(Ω11ρ

2
1 + 2Ω12ρ1ρ2 + Ω12ρ

2
2)

is a Birkhoff normal form of degree 4. The terms quadratic in ρ describe the
dependence of the frequencies of the oscillations on the amplitudes.

Remark
Any system in the Birkhoff normal form is completely integrable.



Normal form in absence of resonances, the Birkhoff theorem

Theorem (G.D.Birkhoff)

Suppose that the eigenfrequencies Ωi do not satisfy any resonance relation of
order L or less. Then in a neighbourhood of the equilibrium position 0 there
exists a symplectic close to the identical change of variables (p, q) 7→ (P,Q)
fixing the equilibrium position 0 and such that in the new variables the
Hamilton function is reduced to a Birkhoff normal form HL(ρ) of degree L up
to terms of degree higher than L:

H(p, q) = HL(ρ) + R, R = O(|P|+ |Q|)L+1

The proof of this theorem will be obtained as a particular case of the proof of
the theorem about a resonant normal form.

Discarding the non-normalized terms R we obtain an integrable system whose
action-angle variables are the symplectic polar coordinates ρi , ϕi defined by

Pi =
p

2ρi cosϕi , Qi =
p

2ρi sinϕi

and whose trajectories wind round the tori ρ = const with frequencies ∂Hl/∂ρ.

Remark
Most of similar tori, which are invariant under the phase flow, in the general
case exist also in the original system; this follows from the results of
Kolmogorov-Arnold-Moser (KAM) theory.
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fixing the equilibrium position 0 and such that in the new variables the
Hamilton function is reduced to a Birkhoff normal form HL(ρ) of degree L up
to terms of degree higher than L:
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The proof of this theorem will be obtained as a particular case of the proof of
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Discarding the non-normalized terms R we obtain an integrable system whose
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2ρi sinϕi

and whose trajectories wind round the tori ρ = const with frequencies ∂Hl/∂ρ.

Remark
Most of similar tori, which are invariant under the phase flow, in the general
case exist also in the original system; this follows from the results of
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Resonant normal forms

The definition of a normal form must be modified for the case where the
eigenfrequencies satisfy some resonance relations. The same modification is
also appropriate for nearly resonant frequencies. Let K be a sublattice of the
integer lattice Zn defining the possible resonances.

Definition
A resonant normal form of degree L for the Hamiltonian for resonances in K is
a polynomial of degree L in canonical symplectic variables Pi ,Qi which in the
symplectic polar coordinates depends on the phases ϕi only via their
combinations (k, ϕ) for k ∈ K.

Theorem (T.M.Cherry)

Suppose that the eigenfrequencies do not satisfy any resonance relations of
degree L or less, except, possibly, for relations (k,Ω) = 0 for k ∈ K. Then in a
neighbourhood of the zero equilibrium position there exists a symplectic close
to the identical change of variables (p, q) 7→ (P,Q) fixing the equilibrium
position and such that in the new variables the Hamilton function reduces to a
resonant normal form of degree L for resonances in K up to terms of degree
higher than L.
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Proof of the theorem about resonant normal form

In the system with Hamiltonian H we perform the change of variables with a
generating function

PTq + S(P, q), S = S3 + . . .+ SL

The new Hamiltonian has the form

H = 1
2
Ω1(P

2
1 + Q2

1 ) + . . .+ 1
2
Ωn(P

2
n + Q2

n) +H3 +H4 + . . .

Here Sl and Hl are forms of degree l in P, q and in P,Q, respectively.

The
old and new Hamiltonians are connected by the relation

H

 
P +

„
∂S(P, q, t)

∂q

«T

, q

!
= H

 
P, q +

„
∂S(P, q, t)

∂P

«T
!

Equating here the forms of the same order in P, q we obtain

nX
j=1

Ωj

„
Pj
∂Sl

∂qj
− Qj

∂Sl

∂Pj

«
= Hl − Fl , l = 3, . . . , L

The form Fl is uniquely determined if we know the Sν , Hν for ν ≤ l − 1.
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Proof of the theorem about resonant normal form, continued

In the symplectic polar coordinates ρ, ϕ the last equation takes the form

Ω1
∂Sl

∂ϕ1
+ . . .+ Ωn

∂Sl

∂ϕn
= Hl − Fl

We choose

Sl =
X

i
fk(ρ)

(k,Ω)
exp(i(k, ϕ)), k ∈ Zn \ K

where the fk are the coefficients of the Fourier series of Fl . Then Hl is in the
required normal form. Thus we can successively determine all the Sl , Hl .
Returning to Cartesian coordinates we obtain the result.



Order reduction in the resonant normal form

Let K be a sublattice of Zn defining the possible resonances. Suppose that the
Hamiltonian is in the resonant normal form for resonances in K. Let r be the
the rank of K.

Denote K̄ the minimal sublattice of Zn that contains K̄ and is such that if
some vector of the form dk, d ∈ N, k ∈ Zn belongs to K̄, then the vector k also
belongs to K̄.

Lemma
Zn has a basis such that first r vectors of this basis belong to K̄.

Let R be a matrix whose rows are vectors of this basis. Then R is an integer
unimodular matrix, det R = ±1.

Express original Hamiltonian via symplectic polar coordinates ρ, ϕ. Make
canonical change of variables ρ, ϕ 7→ I , ψ by means of generating function
W = ITRϕ. Then

ψ = Rϕ, ρ = RT I

The Hamilton function in the new variables does not depend on the last n − r
components of ψ, and thus last n − r components of I are the first integrals of
the system. These first integrals are linear combinations with integer
coefficients of the quantities ρj = 1

2
(P2

j + Q2
j ). On a common level of these

first integrals the system is reduced to a Hamiltonian system with r degrees of
freedom for the first r components of the vectors I , ψ.
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Order reduction in the resonant normal form, continued

Example

Let n = 2, and possible resonance relations are reducible to the form
2Ω1 − Ω2 = 0. Then K̄ = {d(2,−1), d ∈ Z}. Any Hamilton function in the
resonant normal form depend on phases via combination 2ϕ1 − ϕ2:
H = H(ρ1, ρ2, 2ϕ1 − ϕ2). Take

R =

„
2 −1
−1 1

«
Make canonical change of variables ρ, ϕ 7→ I , ψ by means of generating
function W = (2ϕ1 − ϕ2)I1 + (−ϕ1 + ϕ2)I2:

ψ1 = 2ϕ1 − ϕ2, ψ2 = −ϕ1 + ϕ2,

ρ1 = 2I1 − I2, ρ2 = −I1 + I2

Therefore, I1 = ρ1 + ρ2, I2 = ρ1 + 2ρ2, and I2 is the first integral of the system.
Behavior of I1, ψ1 is described by the Hamiltonian system with the Hamilton
function

H(2I1 − I2,−I1 + I2, ψ1)



Resonances near periodic trajectories

As we know, under rather general assumptions study of a dynamics in the
neighborhood of a periodic trajectory on the energy level of an autonomous
Hamiltonian system can be reduced to study of a dynamics in the
neighborhood of an equilibrium of a time-periodic Hamiltonian system.
Moreover, quadratic part of the Hamilton function is time-independent.

Suppose that the eigenvalues of the quadratic part of the Hamiltonian in a
neighbourhood of the equilibrium position 0 are all distinct and purely
imaginary. Then the Hamilton function can be represented in the form

H = 1
2
Ω1(p

2
1 + q2

1) + 1
2
Ω2(p

2
2 + q2

2) + . . .+ 1
2
Ωn(p

2
n + q2

n) + F (p, q, t).

where the expansion of F in the phase variables begins with terms of the third
order of smallness, and F has period 2π in time t.

Definition
The eigenfrequencies Ω1,Ω2, . . . ,Ωn satisfy a resonance relation of order l > 0
for 2π-periodic hamiltonian i if there exist integers ki such that
k1Ω1 + . . .+ knΩn + k0 = 0 and |k1|+ . . .+ |kn| = l .

For example, Ω1 = Ω2 + 3 is a resonance relation of order 2.



Normal form in absence of resonances for non-autonomous system

Theorem (G.D.Birkhoff)

Suppose that the characteristic frequencies Ωi of the 2π-periodic system do not
satisfy any resonance relation of order L or less. Then there is a symplectic
change of variables that is 2π-periodic in time and reduces the Hamiltonian
function to the same Birkhoff normal form of degree L as if the system were
autonomous, with the only difference that the remainder terms of degree L + 1
and higher depend 2π-periodically on time.



Non-autonomous resonant normal forms

The definition of a normal form must be modified for the case where the
eigenfrequencies satisfy some resonance relations. The same modification is
also appropriate for nearly resonant frequencies. Let K be a sublattice of the
integer lattice Zn+1 defining the possible resonances.

Definition
A non-autonomous resonant normal form of degree L for the Hamiltonian for
resonances in K is a polynomial of degree L in canonical symplectic variables
Pi ,Qi which in the symplectic polar coordinates depends on the phases ϕi and
time t only via their combinations k1ϕ1 + k2ϕ2 + . . .+ knϕn + k0t for
(k1, k2, . . . , kn, k0) ∈ K.

Theorem
Suppose that the eigenfrequencies do not satisfy any resonance relations of
degree L or less, except, possibly, for relations
k1Ω1 + k2Ω2 + . . .+ knΩn + k0 = 0 for (k1, k2, . . . , kn, k0) ∈ K. Then in a
neighbourhood of the zero equilibrium position there exists a symplectic close
to the identical 2π-periodic in time change of variables (p, q) 7→ (P,Q) fixing
the equilibrium position and such that in the new variables the Hamilton
function reduces to a resonant normal form of degree L for resonances in K up
to terms of degree higher than L.
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Order reduction in the non-autonomous resonant normal form

Let K be a sublattice of Zn+1 defining the possible resonances. Suppose that
the Hamiltonian has the non-autonomous resonant normal form for resonances
in K. Let r be the the rank of K. Then a system has n − r independent
integrals in involution which are linear combinations with integer coefficients of
the quantities ρj = 1

2
(P2

j + Q2
j ). On a common level of these first integrals the

system is reduced to an autonomous Hamiltonian system with r degrees of
freedom.

Example

Consider non-autonomous system with one degree of freedom near the
equilibrium. Let all possible resonances are of the form d(3Ω + k0) = 0. Then
truncated at the terms of the 3rd order Hamiltonian in the normal form is

H = ωρ+ Bρ3/2 cos(3ϕ+ k0t + γ), B = const, γ = const

Introduce ψ = ϕ+ (k0t + γ)/3 as a new variable. The Hamilton function for
ρ, ψ is

Φ = δρ+ Bρ3/2 cos(3ψ)

Here δ = Ω + k0/3 is the resonance detuning.
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Order reduction in the non-autonomous resonant normal form, continued

Consider the Hamilton function

Φ = δρ+ Bρ3/2 cos 3ψ, δ = Ω + k0/3

Assume that B 6= 0. Then in the plane with symplectic polar coordinates ρ, ψ
the phase portrait for this Hamilton function for different δ looks as follows:

For this resonance the periodic trajectory of the original autonomous
Hamiltonian system is unstable.



Order reduction in the non-autonomous resonant normal form, continued

In an analogous manner one can construct phase portraits of systems in normal
form for resonances 4Ω + k0 = 0 and kΩ + k0 = 0, k ≥ 5. These phase
portraits looks as follows:

For resonances of order great or equal 5 the periodic trajectory of the original
autonomous Hamiltonian system is stable.



LECTURE 17



PERTURBATION THEORY FOR

INTEGRABLE SYSTEMS



Perturbation theory

One of typical problems of perturbation theory can be formulated as follows.
Consider system of the form

ẋ = v0(x) + εv1(x , ε), x ∈ RN , 0 < ε� 1

This system is called the perturbed system, term εv1(x , ε) is called the
perturbation.
Putting ε = 0 we get the unperturbed system, the dynamics in this system is
assumed to be known.
The goal of the perturbation theory is studying of dynamics of perturbed
system on “long enough” time intervals.

The words “long enough” are very important here. One should consider typical
time intervals on which the perturbation has essential effect on dynamics.
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Unperturbed systems with rotating phases

Assume that the unperturbed system is integrable .
There are different definitions of integrability. Here the system is called
integrable in some domain of the phase space, if in this domain one can make
transformation of variables

x 7→ I , ϕ, I ∈ D ⊂ Rn, ϕ ∈ Tm, m + n = N

such that in new variables the system has the form

İ = 0, ϕ̇ = ω(I )

Thus the domain D is foliated by invariant tori. Variable I enumerates tori. For
given torus (i. e. given I ) variable ϕ defines coordinates (phases ) on this
torus. In these coordinates motion on torus is m-dimensional rotation with the
frequency vector ω(I ).



Perturbed systems with rotating phases. Averaging principle

In the variables I , ϕ the perturbed system has the form

İ = εf (I , ϕ, ε), ϕ̇ = ω(I ) + εg(I , ϕ, ε)

The functions f and g have period 2π in components of ϕ. The variables I
here are called the slow variables, and the phases ϕ are called the fast variables.
The system in this form is called a perturbed system with rotating phases.

In applications one is usually interested mainly in the behaviour of the slow
variables on the time intervals of the length at least of order 1/ε . To describe
this behavior the averaging principle prescribes to replace the first equation in
the perturbed system with rotating phases by the averaged equation

J̇ = εF (J), F (J) =
1

(2π)m

Z 2π

0

Z 2π

0

. . .

Z 2π

0

f (J, ϕ, 0) dϕ1dϕ2 . . . dϕm.

(Here ϕj are components of ϕ. )
Let I (t) be a slow motion in the original system, and J(t) in the averaged one,
J(0) = I (0). According to the averaging principle, I (t) is replaced by J(t).
To justify this recipe (which does not always yield a correct answer) we must
find conditions which ensure that |I (t)− J(t)| → 0 for 0 ≤ t ≤ 1/ε as ε→ 0.
If the last relation holds, then it is desirable to have an upper estimate of
|I (t)− J(t)| for 0 ≤ t ≤ 1/ε
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Averaging principle, example

Example

Consider the system of equations
İ = ε(a + b cosϕ), ϕ̇ = ω

and the corresponding averaged system
J̇ = εa

Here
I (t) = I (0) + εat + εb[sin(ωt + ϕ0)− sinϕ0]/ω, J(t) = I0 + εat

The solutions of the exact system oscillate about the solutions of the averaged
system with an amplitude of order ε and with frequency ω.

Averaging amounts to dropping the purely periodic term on the right-hand side
of the equation. This term has the same order as the remaining term. But it
oscillates and causes only small oscillations of the solution. The remaining term
causes a drift which over time 1/(εa) changes I by 1.
The averaging principle is based on the idea that in the general case, too, the
oscillating terms discarded in averaging cause only small oscillations, which are
superimposed on the drift described by the averaged system.
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Averaging principle, example, continued

Example (The most standard example for the averaging method)

The van der Pol equation
ẍ = −x + ε(1− x2)ẋ
describes oscillations with a small nonlinear “friction” which is negative for
large amplitudes, and positive for small ones.

Make transformation to
symplectic polar coordinates: x =

√
2I sinϕ, ẋ =

√
2I cosϕ. The unperturbed

equation take the form İ = 0, ϕ̇ = 1. The equation for I = (x2 + ẋ2)/2 in the
perturbed motion has the form
İ = ε(1− x2)ẋ2 = 2εI (1− 2I sin2 ϕ) cos2 ϕ
The averaged equation is
J̇ = εJ(1− 1

2
J)

It has a repelling equilibrium J = 0, and an attracting one J = 2. To the
equilibrium J = 0 there corresponds the equilibrium x = 0, ẋ = 0 of the original
equation. To the equilibrium J = 2 there corresponds a stable limit cycle of the
original equation, which is close to the circle x2 + ẋ2 = 4.
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ẍ = −x + ε(1− x2)ẋ
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describes oscillations with a small nonlinear “friction” which is negative for
large amplitudes, and positive for small ones. Make transformation to
symplectic polar coordinates: x =

√
2I sinϕ, ẋ =
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Procedure for eliminating fast variables and decoupling of slow and fast
motions. Non-resonant case

The important role in all problems connected with the averaging principle is
played by changes of variables that enable one to eliminate, with the required
accuracy, the fast phases from the equations of perturbed motion and thus
separate the slow motion from the fast one. These changes of variables reduce
the original system of equations to the averaged one in the first approximation.

The elimination of fast variables is performed as follows. The desirable
transformation of variables (I , ϕ) 7→ (J, ψ) is sought as a formal series

I = J + εu1(J, ψ) + ε2u2(J, ψ) + . . . , ϕ = ψ + εv1(J, ψ) + ε2v2(J, ψ) + . . . ,

where functions uj , vj are 2π-periodic in ψ. This transformation should be
chosen in such a way that in the new variables the right hand sides of
equations of motion do not contain fast variables, i.e. equations of motion
should have the form

J̇ = εF0(J) + ε2F1(J) + . . . , ψ̇ = ω(J) + εG0(J) + ε2G1(J) + . . .
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Procedure for eliminating fast variables, continued

Substituting formulas for transformation into equations of motion, and equating
the terms of the same order in ε, we obtain the following chain of relations:

F0(J) = f (J, ψ, 0)− ∂u1

∂ψ
ω, G0(J) = g(J, ψ, 0) +

∂ω

∂J
u1 −

∂v1

∂ψ
ω,

Fi (J) = Xi (J, ψ)− ∂ui+1

∂ψ
ω, Gi (J) = Yi (J, ψ) +

∂ω

∂J
ui+1 −

∂vi+1

∂ψ
ω, i ≥ 1.

Functions Xi , Yi are uniquely determined by the terms u1, v1, . . . , ui , vi in
expansion of variables transformation.

The first equation in this chain implies
that

F0(J) = f0(J), u1(J, ψ) =
X
k 6=0

fk
i(k, ω)

exp(i(k, ψ)) + u0
1(J),

where fk , k ∈ Zm are Fourier coefficients of function f at ε = 0, and u0
1 is an

arbitrary function of J. It is assumed that the denominators in this formula do
not vanish, and that the series converges and determines a smooth function. In
the same way from the other equations of the chain one can sequentially
determine F0, v1, . . . ,Gi , ui+1,Fi , vi+1, i ≥ 1.
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1 is an

arbitrary function of J. It is assumed that the denominators in this formula do
not vanish, and that the series converges and determines a smooth function. In
the same way from the other equations of the chain one can sequentially
determine F0, v1, . . . ,Gi , ui+1,Fi , vi+1, i ≥ 1.



Procedure for eliminating fast variables and decoupling of slow and fast
motions. Non-resonant case, continued

If the series for the change of variables are truncated at the terms of order
r ≥ 1, then we obtain a change of variables which reduces the equations of the
perturbed motion to the form

J̇ = εF0(J) + ε2F1(J) + . . .+ εrFr−1(J) + εr+1α(J, ψ, ε)

ψ̇ = ω(J) + εG0(J) + . . .+ εrGr−1(J) + εr+1β(J, ψ, ε)

Discarding here the terms of order εr+1 we obtain a truncated system of the
r -th approximation. The equation for J is decoupled from the other equations
and can be solved separately. Then the behavior of ψ is determined by the
means of the quadrature. The behavior of original variable I in this
approximation is a slow drift (described by the equation for J), on which small
oscillations (described by transformation of variables) are superimposed. The
behavior of ϕ can be represented as a rotation with slowly varying frequency,
on which oscillations are also superimposed.

We have been assuming that in the formulae for the change of variables the
denominators (k, ω(J)) = k1ω1(J) + . . .+ kmωm(J) do not vanish in the
domain considered. This assumption holds for single-frequency systems with
non-vanishing frequency, for systems with constant incommensurable
frequencies, for systems with finitely many harmonics in the perturbation. But
for general multi-frequency systems this condition fails. This is the famous
small denominators problem.
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Averaging in one-frequency systems

Consider the system of equations of the perturbed motion which has only one
phase. Assume that the frequency ω(I ) does not vanish:
ω(I ) > c−1 > 0, c = const. Assume that the solution J(t) of the averaged
system for 0 ≤ t ≤ 1/ε does not approach too closely the boundary of the
domain where the system is defined.

Theorem (P.Fatou)

The difference between the slow motion I (t) in the exact system and J(t) in
the averaged system remains small over time 1/ε:

|I (t)− J(t)| < c1ε if I (0) = J(0), 0 ≤ t ≤ 1/ε

where c1 = const > 0.

Proof.
The change of variables I = J + εu1(J, ϕ) differs from the identity by a
quantity of order ε. It reduces the exact system to the averaged one with an
addition of a small (of order ε2) perturbation. Over time 1/ε this perturbation
can change the value of the slow variable, compared to its value in the
averaged system, only by a quantity of order ε. Returning to the original
variables we obtain the result of the theorem.
This proof, which is based on the elimination of the fast phase by a change of
variables, is due to N.N.Bogolyubov.
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Averaging in one-frequency systems, continued

Theorem
Suppose that the averaged system has a non-degenerate equilibrium position.
Then the exact system has a periodic trajectory along which the slow variables
vary within a neighbourhood of this equilibrium position of size of order ε. If all
the eigenvalues of the averaged system linearized about this equilibrium
position have negative real parts, then the periodic trajectory is orbitally
asymptotically stable. If the real part of one of the eigenvalues is positive, then
the trajectory is unstable.

Proof.
Make change of variables I = J + εu1(J, ϕ). The Poincaré return map P for
the plane {ϕ = 0 mod 2π} has the form

P : J → J + ε2πF (J)/ω(J) + O(ε2)

The truncated map (i.e. map without last term O(ε2)) has a non-degenerate
fixed point J∗: F (J∗) = 0, det(∂F (J∗)/∂J) 6= 0. By the implicit function
theorem, for sufficiently small ε the map P has a fixed point J = J∗ + O(ε),
which serves as the initial condition for the periodic trajectory. Approximate
calculation of multipliers of this fixed points provides the required stability
properties.
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Example: Stability of the upper position of a pendulum with vibrating
suspension point

The equation of motion of a pendulum whose point of suspension performs
vertical sinusoidal oscillations has the form

θ̈ + (g − aΩ2 sin Ωt)`−1 sin θ = 0

Here θ is the angle of deviation of the pendulum from the vertical, a and Ω are
the amplitude and the frequency of the oscillations of the suspension point, ` is
the length of the pendulum, g the acceleration of gravity. Assume that a = a0ε
and Ω = Ω0/ε. We write down the equations of motion in the canonical
Hamiltonian form:

θ′ = ε∂H/∂p, p′ = −ε∂H/∂θ, H = 1
2
(p/`− a0Ω0 sin τ sin θ)2 − g` cos θ

Here τ = t/ε is the new time, prime denotes differentiation with respect to τ ,
and p is the momentum canonically conjugate to the angle θ. The system
averaged over τ has the form

θ′ = ε∂H/∂p, p′ = −ε∂H/∂θ, H = 1
2
p2/`2 + V , V =

1

4
a2

0Ω
2
0 sin2 θ− g` cos θ

The function V is called the effective potential energy.



Example: Stability of the upper position of a pendulum with vibrating
suspension point, continued

The effective potential energy

V =
1

4
a2

0Ω
2
0 sin2 θ − g` cos θ

at the point θ = π corresponding to the upper equilibrium position of the
pendulum has a non-degenerate maximum for

√
2g`/(Ω0a) > 1 and a

non-degenerate minimum for
√

2g`/(Ω0a) < 1.

For sufficiently small ε, the upper position of the original pendulum for these
values of

√
2g`/(Ω0a) is unstable or stable, respectively. The instability follows

from a previous Theorem. To prove stability one should apply
Kolmogorov-Arnold-Moser (KAM) theory.



Exercises

Exercises

1. Pass to the symplectic polar coordinates in the van der Pol equation. By
means of a transformation of variables eliminate dependence of the fast phase
up to terms O(ε2) inclusively from the equation for slow variable.

2. Write down Hamiltonian equations of motion of a pendulum with the
vibrating suspension point.



AVERAGING AND ELIMINATION OF FAST

PHASES IN HAMILTONIAN SYSTEMS



Hamiltonian perturbation theory

Hamiltonian perturbation theory is dealing with the systems of the form

ẋ = v0(x) + εv1(x , ε), x ∈ RN , 0 < ε� 1

in the case when both the unperturbed system and the perturbation are
Hamiltonian.

Suppose that the unperturbed Hamiltonian system is completely
integrable, some domain of its phase space is foliated into invariant tori, and
the action angle variables I , ϕ are introduced in this domain:

I = (I1, . . . , In) ∈ D ⊂ Rn, ϕ = (ϕ1, . . . , ϕn) mod 2π ∈ Tn

The Hamiltonian H0 of the unperturbed system depends only on the action
variables: H0 = H0(I ). The equations of the unperturbed motion have the
usual form:

İ = 0, ϕ̇ = ∂H0/∂I

Suppose that the system is subjected to a small Hamiltonian perturbation.
The perturbed motion is described by the system with Hamiltonian

H = H0(I ) + εH1(I , ϕ, ε):

İ = −ε∂H1/∂ϕ, ϕ̇ = ∂H0/∂I + ε∂H0/∂I

The perturbing Hamiltonian H1(I , ϕ, ε) has period 2π in components of ϕ.
This form of equations is standard for applying the averaging principle.
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Application of the averaging principle

Suppose that the unperturbed frequencies ∂H0/∂I do not satisfy identical
linear relations with integer coefficients. In accordance with the averaging
principle for approximate description of the evolution of the variables I we
average equations of motion over the phases ϕ.

Theorem
In a Hamiltonian system with n degrees of freedom and n frequencies there is
no evolution of the slow variables in the sense that the averaged system has the
form J̇ = 0.

Proof.
When calculating the integral of ∂H0/∂ϕj over the n-dimensional torus we can
first integrate with respect to the variable ϕj . This single integral is equal to
the increment of the periodic function H1 over the period, that is, to zero.

Remark
To preserve the Hamiltonian form of the equations we slightly generalize the
averaging principle: we average also the equation describing the variation of the
angles (phases) ϕ. The resulting averaged system has the Hamiltonian
H(J, ε) = H0(J) + εH1(J), where H1(J) is the average of H1(J, ϕ, 0) over ϕ.
Hence the phases undergo the uniform rotation with frequencies
∂H0/∂J + ∂H1/∂J.
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Averaging in systems with proper degeneration

One often encounters problems with proper degeneracy, in which the
unperturbed Hamiltonian depends not on all the action variables and,
correspondingly, some of the unperturbed frequencies are identically equal to
zero: H = H0(I1, . . . , I`) + εH1(I , ϕ, ε), ` < n. The phases ϕj , j > `, are slow
variables. According to the averaging principle, for approximate description of
the evolution we must average the equations of the perturbed motion over the
fast phases ϕi , i ≤ `.

Theorem
In a Hamiltonian system with n degrees of freedom and ` frequencies, ` < n,
the variables conjugate to the fast phases are integrals of the averaged system.

Example (Laplace-Lagrange theorem on the stability of the Solar System)

Consider the n-body problem under the assumption that the mass of one body
(the Sun) is much larger than the masses of the other bodies (the planets).
The unperturbed system is the one in which the planets do not interact with
each other, and the Sun is at rest. The unperturbed system decomposes into
n − 1 Keplers problems. We suppose that the unperturbed orbits of the planets
are Keplerian ellipses. In the problem under consideration there are n − 1 fast
phases – the mean longitudes of the planets. Their conjugate variables
Λj =

√
µjaj , j = 1, . . . , n− 1, are integrals of the system averaged over the fast

phases. Here the aj are the major semiaxes of the Keplerian elliptic orbits of
the planets, and the µj are factors depending on the masses.
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Symplectic elimination of fast variables: Lindstedt’s method

Consider a perturbed Hamiltonian H = H0(I ) + H1(I , ϕ, ε) with n degrees of
freedom. Suppose that the frequencies do not satisfy any identical resonance
relations. We try to find a symplectic near-identity change of variables
I , ϕ 7→ J, ψ so that the new Hamiltonian H depends only on the slow variables:
H = H(J, ε). We seek a generating function of the change of variables and the
new Hamiltonian in the form of formal series in ε:

I = J + ε∂S/∂ϕ, ψ = ϕ+ ε∂S/∂J,

S(J, ϕ, ε) = S1(J, ϕ) + S2(J, ϕ) + . . . , H(J, ε) = H0(J) + εH1(J) + . . ..

The functions Si must have period 2π in ϕ. The old and new Hamiltonians
satisfy the relation

H(J, ε) = H0(J + ε∂S/∂ϕ) + εH1(J + ε∂S/∂ϕ, ϕ, ε)

Equating here the terms of the same order in ε we obtain the system of
equations

H1(J) =
∂H0

∂J

∂S1

∂ϕ
+ H1(J, ϕ, 0), Hj(J) =

∂H0

∂J

∂Sj

∂ϕ
+ FJ(J, ϕ)

The function Fj is a polynomial in ∂S1/∂ϕ, . . . , ∂Sj−1/∂ϕ.



Symplectic elimination of fast variables: Lindstedt’s method, continued

Take as H1(J) the average of H1(J, ϕ, 0) over ϕ (i.e. average over all
components of ϕ). Then

S1 = −
X
k 6=0

hk

i(k, ω)
exp(i(k, ψ)) + S0

1 (J), ω(J) =
∂H0(J)

∂J

where hk , k ∈ Zm are Fourier coefficients of function H1(J, ϕ, 0) and S0
1 is an

arbitrary function of J. It is assumed that the denominators in this formula do
not vanish, and that the series converges and determines a smooth function. In
a similar way we can determine all Hj , Sj .
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AVERAGING AND ELIMINATION OF FAST

PHASES IN HAMILTONIAN SYSTEMS



Hamiltonian perturbation theory

Hamiltonian perturbation theory is dealing with the systems of the form

ẋ = v0(x) + εv1(x , ε), x ∈ RN , 0 < ε� 1

in the case when both the unperturbed system and the perturbation are
Hamiltonian.

Suppose that the unperturbed Hamiltonian system is completely
integrable, some domain of its phase space is foliated into invariant tori, and
the action angle variables I , ϕ are introduced in this domain:

I = (I1, . . . , In) ∈ D ⊂ Rn, ϕ = (ϕ1, . . . , ϕn) mod 2π ∈ Tn

The Hamiltonian H0 of the unperturbed system depends only on the action
variables: H0 = H0(I ). The equations of the unperturbed motion have the
usual form:

İ = 0, ϕ̇ = ∂H0/∂I

Suppose that the system is subjected to a small Hamiltonian perturbation.
The perturbed motion is described by the system with Hamiltonian

H = H0(I ) + εH1(I , ϕ, ε):

İ = −ε∂H1/∂ϕ, ϕ̇ = ∂H0/∂I + ε∂H0/∂I

The perturbing Hamiltonian H1(I , ϕ, ε) has period 2π in components of ϕ.
This form of equations is standard for applying the averaging principle.
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Application of the averaging principle

Suppose that the unperturbed frequencies ∂H0/∂I do not satisfy identical
linear relations with integer coefficients. In accordance with the averaging
principle for approximate description of the evolution of the variables I we
average equations of motion over the phases ϕ.

Theorem
In a Hamiltonian system with n degrees of freedom and n frequencies there is
no evolution of the slow variables in the sense that the averaged system has the
form J̇ = 0.

Proof.
When calculating the integral of ∂H0/∂ϕj over the n-dimensional torus we can
first integrate with respect to the variable ϕj . This single integral is equal to
the increment of the periodic function H1 over the period, that is, to zero.

Remark
To preserve the Hamiltonian form of the equations we slightly generalize the
averaging principle: we average also the equation describing the variation of the
angles (phases) ϕ. The resulting averaged system has the Hamiltonian
H(J, ε) = H0(J) + εH1(J), where H1(J) is the average of H1(J, ϕ, 0) over ϕ.
Hence the phases undergo the uniform rotation with frequencies
∂H0/∂J + ε∂H1/∂J.
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no evolution of the slow variables in the sense that the averaged system has the
form J̇ = 0.

Proof.
When calculating the integral of ∂H0/∂ϕj over the n-dimensional torus we can
first integrate with respect to the variable ϕj . This single integral is equal to
the increment of the periodic function H1 over the period, that is, to zero.

Remark
To preserve the Hamiltonian form of the equations we slightly generalize the
averaging principle: we average also the equation describing the variation of the
angles (phases) ϕ. The resulting averaged system has the Hamiltonian
H(J, ε) = H0(J) + εH1(J), where H1(J) is the average of H1(J, ϕ, 0) over ϕ.
Hence the phases undergo the uniform rotation with frequencies
∂H0/∂J + ε∂H1/∂J.



Averaging in systems with proper degeneration

One often encounters problems with proper degeneracy, in which the
unperturbed Hamiltonian depends not on all the action variables and,
correspondingly, some of the unperturbed frequencies are identically equal to
zero: H = H0(I1, . . . , I`) + εH1(I , ϕ, ε), ` < n. The phases ϕj , j > `, are slow
variables. According to the averaging principle, for approximate description of
the evolution we must average the equations of the perturbed motion over the
fast phases ϕi , i ≤ `.

Theorem
In a Hamiltonian system with n degrees of freedom and ` frequencies, ` < n,
the variables conjugate to the fast phases are integrals of the averaged system.

Example (Laplace-Lagrange theorem on the stability of the Solar System)

Consider the n-body problem under the assumption that the mass of one body
(the Sun) is much larger than the masses of the other bodies (the planets).
The unperturbed system is the one in which the planets do not interact with
each other, and the Sun is at rest. The unperturbed system decomposes into
n − 1 Keplers problems. We suppose that the unperturbed orbits of the planets
are Keplerian ellipses. In the problem under consideration there are n − 1 fast
phases – the mean longitudes of the planets. Their conjugate variables
Λj =

√
µjaj , j = 1, . . . , n− 1, are integrals of the system averaged over the fast

phases. Here the aj are the major semiaxes of the Keplerian elliptic orbits of
the planets, and the µj are factors depending on the masses.
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Symplectic elimination of fast variables: Lindstedt’s method

Consider a perturbed Hamiltonian H = H0(I ) + εH1(I , ϕ, ε) with n degrees of
freedom. Suppose that the frequencies do not satisfy any identical resonance
relations. We try to find a symplectic near-identity change of variables
I , ϕ 7→ J, ψ so that the new Hamiltonian H depends only on the slow variables:
H = H(J, ε). We seek a generating function of the change of variables and the
new Hamiltonian in the form of formal series in ε:

I = J + ε∂S/∂ϕ, ψ = ϕ+ ε∂S/∂J,

S(J, ϕ, ε) = S1(J, ϕ) + εS2(J, ϕ) + . . . , H(J, ε) = H0(J) + εH1(J) + . . ..

The functions Si must have period 2π in ϕ. The old and new Hamiltonians
satisfy the relation

H(J, ε) = H0(J + ε∂S/∂ϕ) + εH1(J + ε∂S/∂ϕ, ϕ, ε)

Equating here the terms of the same order in ε we obtain the system of
equations

H1(J) =
∂H0

∂J

∂S1

∂ϕ
+ H1(J, ϕ, 0), Hj(J) =

∂H0

∂J

∂Sj

∂ϕ
+ FJ(J, ϕ)

The function Fj is a polynomial in ∂S1/∂ϕ, . . . , ∂Sj−1/∂ϕ.



Symplectic elimination of fast variables: Lindstedt’s method, continued

Take as H1(J) the average of H1(J, ϕ, 0) over ϕ (i.e. average over all
components of ϕ). Then

S1 = −
X
k 6=0

hk

i(k, ω)
exp(i(k, ψ)) + S0

1 (J), ω(J) =
∂H0(J)

∂J

where hk , k ∈ Zm are Fourier coefficients of function H1(J, ϕ, 0) and S0
1 is an

arbitrary function of J. It is assumed that the denominators in this formula do
not vanish, and that the series converges and determines a smooth function. In
a similar way we can determine all Hj , Sj .

If the series for function S is truncated at the terms of order r ≥ 1, then we
obtain a change of variables which reduces the perturbed Hamiltonian to the
form

H(J, ε) = H0(J) + εH1(J) + . . .+ εrHr + εr+1α(J, ψ, ε)

Discarding here the term of order εr+1 we obtain a truncated system of the r -th
approximation: J̇ = 0, ψ̇ = ∂H/∂J. So, in this approximation J = const,
which means that phase space is foliated by invariant tori. Motion on each
torus is a rotation with constant frequency vector. These tori are are obtained
by small deformation from the unperturbed tori I = const. This deformation is
described by formula I = J + ε∂S/∂ϕ.

Kolmogorov-Arnold-Moser theory explains to which extent the above picture is
valid.
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Some remarks

1. For perturbed Hamiltonian systems with proper degeneration there exists
procedure of symplectic elimination of fast phases. The “actions” canonically
conjugate to these phases are first integrals of corresponding truncated system.

2. If the unperturbed frequencies are close to resonance, then instead of
Lindstedt’s method von Zeipel’s method is used. This is a procedure of
symplectic elimination of fast phases from a Hamiltonian, which allows to keep
in a Hamiltonian the dependence on the resonant phases. The resulting
Hamiltonian system is not, in general, completely integrable, but has some
additional integrals which are close to linear combinations (with integer
coefficients) of original “actions”.

3. One often encounters problems in which the perturbation depends
periodically also on time t. This case reduces to the one considered above by
introducing the new phase ϕn+1 and its conjugate variable In+1. The variation
of the extended set of phase variables is described by a system of equations
with the Hamiltonian

H = In+1 + H0(I1, . . . , In) + εH1(I1, . . . , In, ϕ1, . . . , ϕn, ϕ+1, ε).
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KOLMOGOROV-ARNOLD-MOSER (KAM)

THEORY



Non-degeneracy conditions for the unperturbed motion

Consider an unperturbed integrable Hamiltonian system with Hamiltonian
H0(I ). Its phase space is foliated into the invariant tori I = const. The motion
on a torus is conditionally periodic with frequency vector ω(I ) = ∂H0/∂I . A
torus on which the frequencies are rationally independent is said to be
non-resonant. A trajectory fills such a torus everywhere densely (as one says, it
is a winding of the torus). The other tori I = const are said to be resonant.
They are foliated into invariant tori of lower dimension.

The unperturbed system is said to be non-degenerate if its frequencies are
functionally independent:

det(∂ω/∂I ) = det(∂2H0/∂I 2) 6= 0

In a non-degenerate system the non-resonant tori form an everywhere dense set
of full measure. The resonant tori form a set of measure zero, which, however,
is also everywhere dense.
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Non-degeneracy conditions for the unperturbed motion, continued

The unperturbed system is said to be isoenergetically non-degenerate if one of
the frequencies does not vanish and the ratios of the other n − 1 frequencies to
it are functionally independent on the energy level H0 = const. The condition
of isoenergetic non-degeneracy can be written in the form

det

„
∂ω/∂I ω
ω 0

«
= det

„
∂2H0/∂I 2 ∂H0/∂I
∂H0/∂I 0

«
6= 0

In an isoenergetically non-degenerate system both the set of non-resonant tori
and the set of resonant tori are dense on each energy level; but, as above, the
first set has full measure, whereas the second has measure zero.

Remark
The system can be non-degenerate but not isoenergetically non-degenerate,
and vice versa.
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Invariant tori of the perturbed system

Now consider a perturbed system with Hamiltonian

H = H0(I ) + εH1(I , ϕ, ε)

Theorem (Kolmogorovs theorem)

If the unperturbed Hamiltonian system is non-degenerate or isoenergetically
non-degenerate, then under a sufficiently small Hamiltonian perturbation most
of the non-resonant invariant tori do not disappear but are only slightly
deformed, so that in the phase space of the perturbed system there also exist
invariant tori filled everywhere densely with phase curves winding around them
conditionally periodically with the number of frequencies equal to the number
of degrees of freedom. These invariant tori form a majority in the sense that
the measure of the complement of their union is small together with the
perturbation. In the case of isoenergetic non-degeneracy the invariant tori form
a majority on each energy-level manifold.

The proof of the theorem is based on the converging procedure for eliminating
the fast phases. The invariant tori constructed in this theorem are called
Kolmogorov tori. The frequency vectors of the motions on the Kolmogorov
tori belong to the Cantor set

Ξκ = {ξ : ξ ∈ Rn, |(k, ξ)| > κ|k|−ν , k ∈ Zn, k 6= 0}

where κ ∼
√
ε, ν > n − 1.
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Absence of evolution in systems with two degrees of freedom

In systems with two degrees of freedom the existence of a large number of
invariant tori implies the absence of evolution for all (and not just for most)
initial conditions.

Theorem (V.I.Arnold)

In an isoenergetically non-degenerate system with two degrees of freedom, for
all initial conditions the action variables remain forever near their initial values.

Proof.
In the system under consideration the phase space is four-dimensional, the
energy levels are three-dimensional, and the Kolmogorov tori are
two-dimensional and fill a larger part of each energy level. A two-dimensional
torus divides a three-dimensional energy level. A phase curve starting in a gap
between two invariant tori of the perturbed system remains forever trapped
between these tori. The corresponding action variables remain forever near
their initial values.



Diffusion of slow variables in multidimensional systems and its exponential
estimate

If the number of degrees of freedom n is greater than two, then the
n-dimensional invariant tori do not divide a (2n − 1)-dimensional energy level
manifold, but are situated in it similar to points on a plane or lines in a space.
In this case the gaps corresponding to different resonances are connected with
each other. Therefore the invariant tori do not prevent a phase curve originated
near a resonance going far away.

Numerical experiments show that the evolution of the action variables
apparently is not of directional nature, but is a more or less random walk along
resonances around the invariant tori. This process is called Arnold diffusion.

For generic systems diffusion happens exponentially slowly. The corresponding
genericity condition is called the steepness condition. An analytic function is
said to be steep if it has no stationary points and its restriction to any plane of
any dimension has only isolated stationary points.

Theorem (Nekhoroshev.)

If the unperturbed Hamiltonian H0(I ) is a steep function, then there exist
a, b, c such that in the perturbed Hamiltonian system for a sufficiently small
perturbation we have

|I (t)− I (0)| < εb for 0 ≤ t ≤ exp(c/εa)
Here a, b, c are positive constants depending on the characteristics of the
unperturbed Hamiltonian.
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Invariant tori in the theory of small oscillations

KAM theory allows to construct invariant tori near equilibria and periodic
trajectories in Hamiltonian systems, near fixed points of symplectic maps.

If there are no resonances up to 4-th order inclusively, then the normal form of
the 4-th order plays a role of an unperturbed system, and the high order terms
can be considered as a perturbation.

Here a Poincaré section near a periodic trajectory on an energy level for a
Hamiltonian system with two degrees of freedom (or, a phase plane near a fixed
point of a two-dimensional symplectic map) is shown ( (a) - for normal form,
(b) - for original system).

For Hamiltonian systems with two degrees of freedom existence of of big
number of invariant tori implies stability of equilibria and periodic trajectories
(correspondingly, for two-dimensional symplectic maps existence of big number
of invariant curves implies stability of fixed points).
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