(Esa línea a veces es llamada "radio vector").
|
Ilustrando la 2da. ley de Kepler: A los segmentos AB y CD les lleva el mismo tiempo el recorrerlo. |
Una elipse es un óvalo elongado simétrico, con dos focos localizados simétricamente hacia las orillas más "agudas"--un foco contiene al Sol, y el otro está vacío. (Dibuje dicha elipse). Si acercamos los focos cada vez más, la elipse se parece cada vez más a un círculo, y cuando se traslapan, finalmente tenemos un círculo.
[La órbita de la Tierra, así como la mayoría de las órbitas planetarias, se aproximan mucho a un círculo. Si le mostrara la órbita de la Tierra sin el Sol en un foco, es probable que no pudiera distinguirla de un círculo. Con el Sol incluído, sin embargo, podrá notar que está ligeramente fuera de centro].
La clave de la 2da. ley de Kepler es que, aunque la órbita es simétrica, el movimiento no lo es. Un planeta se acelera al acercarse al Sol, obtiene su máxima velocidad al pasar en su máxima aproximación, y luego se desacelera.
(La estrella S2 se acelera hasta un 2% de la velocidad de la luz al acercarse al agujero negro que está en el centro de nuestra galaxia).
Lo que ocurre se entiende mejor en términos de energía. Conforme se retira el planeta del Sol (o el satélite de la Tierra), este pierde energía al sobreponerse de la atracción gravitacional, y se desacelera, como una piedra tirada hacia arriba. Y al igual que la piedra, vuelve a ganar su energía (completamente--no hay resistencia al aire en el espacio) al regresar.
Hay un ejercicio fácil aquí, el cual está también en la sección #12A .
http://www.phy6.org/stargaze/Mkepl2A.htm
Suponga que tiene un planeta cuyas distancias más pequeña/grande desde el centro son (r1, r2)--son llamados perihelio y efelio si el centro es el Sol, o (perigeo, apogeo) si el centro es la Tierra. (Las distancias siempre se miden desde el centro de los cuerpos, o desde los centros de gravedad).
Digamos que es un planeta que está orbitando el Sol. Entonces--la velocidad V1 en perihelio es la más rápida de la órbita. Es por lo tanto, la distancia cubierta en un segundo en perihelio. La velocidad V2 en afelio es la más lenta de la órbita. Es por lo tanto la distancia cubierta en un segundo en afelio.
El área barrida por el "radio vector" r durante un segundo después del perihelio es un triángulo rectángulo de base V1, de manera que su área es 0.5 r1 V1
El área barrida por el "radio vecto" r durante un segundo después del afelio es un triángulo rectángulo de base V2, de manera que su área es 0.5 r2 V2
De acuerdo a la ley de la áreas, ambas áreas son iguales, de manera que
r1 V1 =
r2 V2
Divida ambos lados entre r1V2
y obtenga
V1:V2 =
r2:r1
Si el afelio r2 es 3 veces la distancia del perihelio, la velocidad V2 en ese lugar es 3 veces más lenta. (Note: esta relación solo es válida en estos dos puntos de la órbita. En cualquier otro punto, la velocidad y el radio no son perpendiculares).
----------------
¿Estamos lo más cerca del Sol? Aproximadamente el 4 de Enero, en un 1.5%, no lo suficiente como para que el Sol se aprecie distinto.
Esta es una forma rápida para demostrar esta asimetría (aunque probablemente no tenga tiempo para cubrirla en clase). Dibuje una elipse, con el eje largo y una línea perpendicular a dicho eje a través del Sol)
.Entonces ocurre (pura casualidad) que el equinoccio de primavera y el de otoño, cuando el día y la noche son iguales, típicamente el 21 de Marzo, Septiembre 22 ó 23, caen muy cercanos a esta línea perpendicular.
Observe la vista esquemática de la órbita de la Tierra en la sección #3. El eje largo (como se definió arriba) es la línea conectando Diciembre-Junio en ese dibujo, y la línea perpendicular es la que conecta Marzo-Septiembre.
¿Si la órbita fuera exactamente un círculo? (en cuyo caso, lo que llamamos "eje largo", sería completamente arbitrario, un diámetro igual que cualquier otro), entonces, de acuerdo a la segunda ley de Kepler, la Tierra se movería a una velocidad constante y pasaría el mismo tiempo en el verano que en el otoño. ¡De hecho, pasa aproximadamente dos días menos en la parte del invierno! (Tome un calendario y cuente los días de un equinoccio al otro). Eso puede significar que
- La parte del invierno es más corta, o
- La Tierra se mueve más rápido en la parte del invierno
En realidad, ambas condiciones son ciertas, si la Tierra está lo más cercana a Sol alrededor de Enero 4. La "mitad" de la elipse (determinada por la línea perpendicular definida arriba) que está más cercana al Sol es más pequeña (demuéstrelo con un dibujo de una elipse que sea notoriamente ovalada), y de acuerdo a la segunda ley de Kepler, la Tierra se mueve más rápida al estar más cerca del Sol.
-------------------------
El hecho de que el hemisferio norte esté más cerca del Sol a mediados de invierno y lo más retirado a mediados del verano, hace que se moderen las estaciones, haciéndolas más suaves.
En el hemisferio sur, los haría más crudos, aunque los grandes océanos ayudan a moderar su efecto.
Pero el eje de la Tierra se mueva alrededor de un cono, con un ciclo de 26000 años. En 13000 años, estaremos lo más cerca del Sol a mediados del verano, y el clima se hará más extremo. De acuerdo a lo descrito en la sección 7, esto puede ser un efecto ligado a los orígenes de la edad de hielo, pero no tenemos tiempo para los detalles.
Tercera ley de Kepler
|